K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

a) Ta có: 1020= (102)10=10010>9010

\(\Rightarrow\)1020>9010

b) Ta có: (-5)30 = (-53)10 =(-125)10
và (-3)50 = (-35)10 = (-243)10
Mà (-125)10 < (-243)10 => (-5)10 < (-3)50

c)- 0,320=(0,32)10=0,0910.

Do 0,09<0,1 =>0,0910<0,110.

=>0,110>0,320.

10 tháng 9 2017

d) Ta có : \(\left(\dfrac{1}{16}\right)^{10}=\left(\dfrac{1}{2^4}\right)^{10}=\dfrac{1}{2^{40}}\)

\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}\)

\(2^{40}< 2^{50}\Rightarrow\dfrac{1}{2^{40}}>\dfrac{1}{2^{50}}\Rightarrow\left(\dfrac{1}{16}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)

31 tháng 7 2016

\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)

Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

31 tháng 7 2016

a) \(10^{20}\) và \(9^{10}\)

Vì 10 > 9 ; 20 > 10

nên \(10^{20}>9^{10}\)

Vậy \(10^{20}>9^{10}\)

b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)

Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)

           \(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)

Vì 243 > 125 nên \(125^{10}< 243^{10}\)

Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)

c) \(64^8\) và \(16^{12}\)

Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)

          \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Vậy \(64^8=16^{12}\left(=4^{24}\right)\)

d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)

Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)

Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)

3 tháng 10 2020

a) 102 và 90^ 10

Ta có : 9010 = (905)2

Vì 905 > 10 => 90^10 > 10^2

b) (-5)^30 và (-3)^50

Ta có : (-5)^30= (-5^3)^10= -125^10

            (-3)^50= (-3^5)^ 10= -243^10

Vì -125>-243 => (-3)^50 < (-5)^30

c) (-1)^10/16 và 1^50/2

Ta có: (-1)^10/16 = 1/16 = 1/2^4= 2(-4)

          1^50/2 = 1/2= 2(-1)

Vì 2(-1) < 2(-4) => 1^50/2 < (-1)^10/16

19 tháng 5 2017

a, Ta có :

\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\left(\frac{1}{32}\right)^{10}\)

bạn so sánh nha :)

b,

T/c : \(99^{20}=\left(\left(99\right)^2\right)^{10}=9801^{10}\)

tiếp đây thì bạn tự làm nha có gì k hiểu ibx mk

b)Ta có:

\(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)

c)Ta có:

\(0,3^{20}=\left(0,3^2\right)^{10}=0,09^{10}< 0,1^{10}\)

d)Ta có:

\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2}\right)^{40}\)

\(\left(\frac{1}{8}\right)^{13}=\left(\frac{1}{2}\right)^{39}\)

\(\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{39}\)

nên \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{8}\right)^{13}\)

e)Ta có:

\(3^{21}=3^{20}.3=9^{10}.3\)

\(2^{31}=2^{30}.2=8^{10}.2\)

\(9^{10}.3>8^{10}.2\)

\(\Rightarrow3^{21}>2^{31}\)

3 tháng 8 2018

\(1.a)\) Ta có: \(\left\{{}\begin{matrix}64^8=\left(8^2\right)^8=8^{16}\\16^{12}=8^{12}.2^{12}=8^{12}.\left(2^3\right)^4=8^{12}.8^4=8^{16}\end{matrix}\right.\)

Có: \(8^{16}=8^{16}\Rightarrow64^8=16^{12}\)

Vậy...

\(b)\) Ta có: \(\left\{{}\begin{matrix}\left(-5\right)^{30}=\left[\left(-5\right)^3\right]^{10}=\left(-125\right)^{10}\\\left(-3\right)^{50}=\left[\left(-3\right)^5\right]^{10}=\left(-243\right)^{10}\end{matrix}\right.\)

Có: \(\left(-125\right)^{10}< \left(-243\right)^{10}\Rightarrow\left(-5\right)^{30}< \left(-3\right)^{50}\)

Vậy...

\(c)\) Ta có: \(\left\{{}\begin{matrix}2^{27}=\left(2^3\right)^9=8^9\\3^{18}=\left(3^2\right)^9=9^9\end{matrix}\right.\)

Có: \(8^9< 9^9\Rightarrow2^{27}< 3^{18}\)

Vậy...

\(d)\) Ta có: \(\left\{{}\begin{matrix}\left(\dfrac{1}{25}\right)^{10}=\left[\left(\dfrac{1}{5}\right)^2\right]^{10}=\left(\dfrac{1}{5}\right)^{20}\\\left(\dfrac{1}{125}\right)^8=\left[\left(\dfrac{1}{5}\right)^3\right]^8=\left(\dfrac{1}{5}\right)^{24}\end{matrix}\right.\)

Có: \(\left(\dfrac{1}{5}\right)^{20}< \left(\dfrac{1}{5}\right)^{24}\Rightarrow\left(\dfrac{1}{24}\right)^{10}< \left(\dfrac{1}{125}\right)^8\)

Vậy...

\(e)\)Có: \(32^9=\left(2^5\right)^9=2^{45}< 2^{52}=\left(2^4\right)^{13}=16^{13}< 18^{13}\)

\(\Rightarrow32^9< 18^{13}\)

Vậy...

4 tháng 8 2017

1020 = 102.10 = ( 102)10 

Vì ( 102)10 > 910 nên 1020 > 910 

648 = 644.4 = ( 644)4 

1612 = 163.4 = ( 163)4 

Vì ( 644)4 > ( 163)4 nên 648 > 1612 

4 tháng 8 2017

Ta có : A = |x - 500| + |x - 300| \(\ge\left|x-500+x-300\right|=-200\)

Vậy Amin = -200 khi 300 \(\le\) x \(\le\) 500

24 tháng 10 2017

a) \(\left(0,1\right)^{10}\)\(\left(0,3\right)^{20}\)

\(\left\{{}\begin{matrix}0,1< 0,3\\10< 20\end{matrix}\right.\)

\(\Rightarrow\left(0,3\right)^{20}>\left(0,1\right)^{10}\)

b) \(\left(-\dfrac{1}{2}\right)^{5^{1^3}}\)\(\left(-\dfrac{1}{3}\right)^{3^{1^5}}\)

\(\left\{{}\begin{matrix}\left(-\dfrac{1}{2}\right)^{5^{1^3}}=\left(-\dfrac{1}{2}\right)^5\\\left(-\dfrac{1}{3}\right)^{3^{1^5}}=\left(-\dfrac{1}{3}\right)^3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-\dfrac{1}{2}< -\dfrac{1}{3}\\5>3\end{matrix}\right.\)

\(\Rightarrow\left(-\dfrac{1}{2}\right)^5< \left(-\dfrac{1}{3}\right)^3\)

Vậy

\(\left(-\dfrac{1}{2}\right)^{5^{1^3}}\) < \(\left(-\dfrac{1}{3}\right)^{3^{1^5}}\)

10 tháng 10 2018

a, \(125^3:5^7=\left(5^3\right)^3:5^7=5^9:5^7=5^2\)

b, \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{4}{49}\right)^5:\left(\dfrac{8}{343}\right)^2\)

= \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2^2}{7^2}\right)^5:\left(\dfrac{2^3}{7^3}\right)^2\)

= \(\left(\dfrac{2}{7}\right)^{18}:\left[\left(\dfrac{2}{7}\right)^2\right]^5:\left[\left(\dfrac{2}{7}\right)^3\right]^2\)

=\(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2}{7}\right)^{10}:\left(\dfrac{2}{7}\right)^6\)

= \(\left(\dfrac{2}{7}\right)^{18-10-6}=\left(\dfrac{2}{7}\right)^2\)

c, \(3-\left(\dfrac{-7}{9}\right)^0+\left(\dfrac{1}{3}\right)^5.3^5\)

= 3 - 1 +\(\left[\left(\dfrac{1}{3}\right)^5.3^5\right]\)

= 2 + 1=3

d, \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(9.5\right)^{10}.5^{20}}{\left(25.3\right)^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}\)

= \(\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5\)