Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có:
336 = (34)9 = 819
254 = (26)9 = 649
Mà 819 > 649 => 336 > 254
Vậy 336 > 254
b)
Ta có:
105201-201 = 1050 = 1
1100 = 1
Mà 1 = 1 => 105201-201 = 1100
Vậy 105201-201 = 1100
c)
Ta có:
3500 = (35)100 = 243100
7300 = (73)100 = 343100
Mà 243100 < 343100 => 3500 < 7300
Vậy 3500 < 7300
\(7A=7+7^2+....+7^{101}\)
\(7A-A=\left(7-7\right)+\left(7^2-7^2\right)+......+\left(7^{100}-7^{100}\right)+7^{101}-1\)
\(A=\frac{7^{101}-1}{6}\)
Vậy Biểu thức A = B = \(\frac{7^{101}-1}{6}\)
em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé
D = \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
7 \(\times\) D = \(\dfrac{1}{7}\) - \(\dfrac{2}{7^2}\) + \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\) + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)
7D +D = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
D = ( \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8
Đặt B = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\)
7 \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)
7B + B = 1 - \(\dfrac{1}{7^{202}}\)
B = ( 1 - \(\dfrac{1}{7^{202}}\)) : 8
D = [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8 - \(\dfrac{202}{7^{203}}\)] : 8
D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)
Trả lời :
Bn Dương Gia BẢO đùng bình luận linh tinh nhé !
- Hok tốt !
^_^
7A=7+7^2+7^3+....+7^101
7A-A=(1+7+7^2+....+7^100)-(7+7^2+7^3+....+7^101)
6A=1-7^101
A=1-7^101/6
Vì A < 1 nên A<2^201