\(0,7^{\frac{\sqrt{5}}{6}}\) và \(0,7^{\frac{1}{3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

a. \(0,7^{\frac{\sqrt{5}}{2}}\) và \(0,7^{\frac{1}{3}}\).

Ta có : \(\begin{cases}\left(\frac{\sqrt{5}}{6}\right)^2=\frac{5}{36}>\frac{4}{36}=\left(\frac{1}{3}\right)^2\Rightarrow\frac{\sqrt{5}}{6}>\frac{1}{3}\\0< 0,7< 1\end{cases}\)

                                        \(\Rightarrow0,7^{\frac{\sqrt{5}}{6}}< 0,7^{\frac{1}{3}}\)

 

b. \(2^{\sqrt{3}}\) và \(3^{\sqrt{2}}\)

Ta có : \(\begin{cases}\left(2^{\sqrt{3}}\right)^{\sqrt{3}}=2^3=8\\\left(3^{\sqrt{2}}\right)^{\sqrt{3}}=3^{\sqrt{6}}>3^2=9\end{cases}\)

\(\Rightarrow\left(2^{\sqrt{3}}\right)^{\sqrt{3}}< \left(3^{\sqrt{2}}\right)^{\sqrt{3}}\)

\(\Rightarrow2^{\sqrt{3}}< 3^{\sqrt{2}}\)

 

c. \(\log_{0.4}\sqrt{2}\) và \(\log_{0,2}0,34\)

Ta có : \(\begin{cases}0< 0,4< 1;\sqrt{2}>1\Rightarrow\log_{0,4}\sqrt{2}< 0\\0< 0,2< 1;0< 1< 0,34\Rightarrow\log_{0,2}0,3>0\end{cases}\)

\(\Rightarrow\log_{0,4}\sqrt{2}< \log_{0,2}0,34\)

14 tháng 5 2016

a. \(2^{2\log_25+\log_{\frac{1}{2}}9}\) và \(\frac{\sqrt{626}}{6}\)

Ta có : \(2^{2\log_25+\log_{\frac{1}{2}}9}=2^{\log_225-\log_29}=2^{\log_2\frac{25}{9}}=\frac{25}{9}=\frac{\sqrt{625}}{9}< \frac{\sqrt{626}}{6}\)

           \(\Rightarrow2^{2\log_25+\log_{\frac{1}{2}}9}< \frac{\sqrt{626}}{6}\)

 

b. \(3^{\log_61,1}\) và \(7^{\log_60,99}\)

Ta có : \(\begin{cases}\log_61,1>0\Rightarrow3^{\log_61,1}>3^0=1\\\log_60,99< 0\Rightarrow7^{\log_60,99}< 7^0=1\end{cases}\)

             \(\Rightarrow3^{\log_61,1}>7^{\log_60,99}\)

 

c.  \(\log_{\frac{1}{3}}\frac{1}{80}\) và \(\log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}\)

Ta có : \(\begin{cases}\log_{\frac{1}{2}}\frac{1}{80}=\log_{3^{-1}}80^{-1}=\log_380< \log_381=4\\\log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}=\log_{2^{-1}}\left(15+\sqrt{2}\right)^{-1}=\log_2\left(15+\sqrt{2}\right)>\log_216=4\end{cases}\)

            \(\Rightarrow\log_{\frac{1}{3}}\frac{1}{80}< \log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}\)

12 tháng 4 2017

a) \(log_3\dfrac{6}{5}>log_3\dfrac{5}{6}\) vì \(\dfrac{6}{5}>\dfrac{5}{6}\)

b) \(log_{\dfrac{1}{3}}9>log_{\dfrac{1}{3}}17\) vì \(9>17\) và \(0< \dfrac{1}{3}< 1\).

c) \(log_{\dfrac{1}{2}}e>log_{\dfrac{1}{2}}\pi\) vì \(e>\pi\) và \(0< \dfrac{1}{2}< 1\)

d) \(log_2\dfrac{\sqrt{5}}{2}>log_2\dfrac{\sqrt{3}}{2}\)  vì \(\dfrac{\sqrt{5}}{2}>\dfrac{\sqrt{3}}{2}\).

Em rất muốn biết ... anh học lớp mấy vậy ??? Đây là bài lớp 12 mà batngo

26 tháng 3 2016

a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)

b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)

c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)

d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)

                   \(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)

                   \(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)

26 tháng 3 2016

Chọn 2 làm cơ số, ta có :

\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)

Mặt khác :

\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)

Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)

b) Ta có :

\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)

c) Ta có :

\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)

Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .

Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)

Suy ra \(\log_35=3a\) do đó :

                                     \(\log_25=\log_23.\log35=3ac\)

Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)

Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)

Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)

d) Điều kiện : \(a>0;a\ne0;b>0\)

Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :

\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)

Từ đó ta tính được :

\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)

 

 

5 tháng 5 2016

Ta có \(a=\frac{1}{2}\log_711;b=\log_27\)

Mặt khác  : \(\log_{\sqrt[3]{7}}\frac{121}{8}=3\log_7\frac{11^2}{2^3}=3\left(2\log_711-3\log_72\right)=6\log_711-\frac{9}{\log_27}=12a-\frac{9}{b}\)

Vậy \(\log_{\sqrt[3]{7}}\frac{121}{8}=12a-\frac{9}{b}\)

28 tháng 3 2016

d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :

\(\log_2x+\log_3x+\log_4x=\log_{20}x\)

\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)

\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)

\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)

Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)

Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)

Vậy nghiệm duy nhất của phương trình là \(x=1\)

28 tháng 3 2016

c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :

\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\log_5x=1\)

\(\Leftrightarrow x=5^1=5\) thỏa mãn

Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

26 tháng 3 2016

d) So sánh :

\(\sqrt{3}+1\) và \(\sqrt{7}\), ta có :

\(\left(\sqrt{3}+1\right)^2-\left(\sqrt{7}\right)^2=3+1+2\sqrt{3}-7=2\sqrt{3}-3\)

Hơn nữa : 

\(\left(2\sqrt{3}\right)^2-3^2=4.3-9=9>0\)

Do đó 

\(\sqrt{3}+1>\sqrt{7}\)

Mà \(e^{\sqrt{3}+1}>e^{\sqrt{7}}\)

26 tháng 3 2016

c) Ta có :

\(\left(\frac{\pi}{5}\right)^{\sqrt{10}-3}=\frac{\left(\frac{\pi}{5}\right)^{\sqrt{10}}}{\left(\frac{\pi}{5}\right)^3}\)

Lại có \(0<\pi<5\) nên \(0<\frac{\pi}{5}<1\) và \(\sqrt{10}>3\)

Do đó : \(\left(\frac{\pi}{5}\right)^{\sqrt{10}}<\left(\frac{\pi}{5}\right)^3\)

Mà \(\left(\frac{\pi}{5}\right)^3>0\) nên \(\left(\frac{\pi}{5}\right)^{\sqrt{10}-3}=\frac{\left(\frac{\pi}{5}\right)^{10}}{\left(\frac{\pi}{5}\right)^3}<1\)

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\) A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1) 2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\) A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5) 3 tập nghiệm của bất pt...
Đọc tiếp

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

6
NV
2 tháng 7 2020

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

NV
2 tháng 7 2020

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)