Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
√ 8+√ 5 vs √ 7+√ 6
bình phuong 2 ve' ta dc
8+2√40+5 vs 7+2√ 42+6
<=>13+2√ 40 vs 13+2√ 42
do √ 40< √ 42 nen suy ra
√ 8+√ 5<√ 7+√ 6
a: \(2\sqrt{6}=\sqrt{24}\)
\(3\sqrt{3}=\sqrt{27}\)
mà 24<27
nên \(2\sqrt{6}< 3\sqrt{3}\)
b: \(\dfrac{2}{5}\sqrt{6}=\sqrt{\dfrac{4}{25}\cdot6}=\sqrt{\dfrac{24}{25}}\)
\(\dfrac{7}{4}\sqrt{\dfrac{1}{3}}=\sqrt{\dfrac{49}{16}\cdot\dfrac{1}{3}}=\sqrt{\dfrac{49}{48}}\)
mà 24/25<1<49/48
nên \(\dfrac{2}{5}\sqrt{6}< \dfrac{7}{4}\sqrt{\dfrac{1}{3}}\)
Đặt \(A=\sqrt{7}-\sqrt{6};B=\sqrt{6}-\sqrt{5}\)
Áp dụng bất đẳng thức \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)(Có thể chứng minh bằng biến đổi tương đương)
Được : \(\frac{\sqrt{5}+\sqrt{7}}{2}< \sqrt{\frac{5+7}{2}}\Leftrightarrow\frac{\sqrt{5}+\sqrt{7}}{2}< \sqrt{6}\Leftrightarrow\sqrt{5}+\sqrt{7}-2\sqrt{6}< 0\)
Xét \(A-B=\sqrt{5}+\sqrt{7}-2\sqrt{6}< 0\Rightarrow A< B\)
Ta có: \(\sqrt{7}-\sqrt{6}\approx0.1\)
\(\sqrt{6}-\sqrt{5}\approx0.2\)
\(\Rightarrow\sqrt{7}-\sqrt{6}< \sqrt{6}-\sqrt{5}\)
a Ta có : 5 x ( 30 + 56 ) = 5 x 30 + 5 x 56
Vậy 5 x ( 30 + 56 ) = 30 x 5 + 56 x 5
b Ta có :
7 x ( 19 + 4 ) = 7 x 19 + 7 x 4
Vậy 7 x ( 19 + 4 ) < 7 x 19 + 10 x 19
c Ta có :
( 18 + 17 ) x 6 = 18 x 6 + 17 x6
Vậy 6 x 18 + 6 x 21 > 18 x 6 + 17 x 6
d. 6 x ( 14 - 7 ) = 6 x 14 - 6 x 7
Vậy 6 x ( 14 - 7 ) < 6 x 16 - 6 x 7
k mk nha
a) bằng nhau
b) biểu thức dầu tiên lớn hơn
c) biểu thức đầu tiên lớn hơn
d) biểu thức thứ hai lớn hơn
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
So sánh: √6-√5 với √7-√6
√6-√5 = 0,213 (xấp xỉ)
√7-√6 = 0,196 (xấp xỉ)
=> ta có √6-√5 > √7-√6