K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

\(2^{64}>2^{63}=\left(2^7\right)^9=128^9\)

\(5^{22}< 5^{24}=\left(5^3\right)^8=125^8< 128^8< 128^9\)

\(\Rightarrow2^{64}>5^{22}\)

15 tháng 9 2015

​rắc rối lắm bạn ơi

10 tháng 9 2023

S=1+2+22+...+29�=1+2+22+...+29

2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)

2S=2+22+23+...+292�=2+22+23+...+29

2SS=(2+22+23+...+210)(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

 

HT

11 tháng 9 2023

S=1+2+22+...+29�=1+2+22+...+29

2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)

2S=2+22+23+...+292�=2+22+23+...+29

2SS=(2+22+23+...+210)(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

9 tháng 10 2015

523x555=523+22=545

20 tháng 9 2016

8 ^ 5 = 64 ^ 2 . 8 > 64 ^ 2 => 8 ^ 5 > 64 ^ 2 :D

20 tháng 9 2016

Ta có: 642=(82)2=82x2=84

 Vì 84<85(cơ số bé hơn)

Nên 85<642

1 tháng 2 2017

Bài 3 : Tìm x,y thuộc Z, biết :

a) x . y = -21

b) ( 2x - 1 ) ( 2y+ 1 ) = -25

23 tháng 1 2018

a) 32n với 23n

xét 32n:                                                      Xét 23n:

=32.3n                                                           = 23.2n

=9.3n                                                             = 8.2n

Ta thấy: 9>8,3n>2n

=>32n>23n

23 tháng 1 2018

a , 3^2n và 2^3n

Ta có : 3^2n = 3^2 . n = 9^n

             2^3n = 2^3 . n = 8^n

Mà 9^n > 8^n => 3^2n > 2^3n

c , 5^36 và 11^24

Ta có : 5^36 = 5^3 .  12 = 125^12

             11^24 = 11^2 . 12 = 121^12

Mà 125^12 > 121^12 => 5^36 > 11^24

b , 5^23 và 6 . 5^22

Ta có : 5^23 = 5 . 5^22

Mà 6 > 5   =>   6 . 5^22 > 5 . 5^22

=> 5^23 < 6 . 5^22

CT
29 tháng 3 2023

em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé

29 tháng 3 2023

       D =           \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) -  \(\dfrac{202}{7^{203}}\)

\(\times\) D  =  \(\dfrac{1}{7}\) -  \(\dfrac{2}{7^2}\) +  \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\)  + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)

7D +D  =   \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)

         D = (  \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8

Đặt    B =      \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\) 

  7   \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)

7B + B   =  1 - \(\dfrac{1}{7^{202}}\)

          B   =  ( 1 - \(\dfrac{1}{7^{202}}\)) : 8

         D  =  [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8  - \(\dfrac{202}{7^{203}}\)] : 8 

          D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)