K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 43/52>26/52=1/2=60/120

b: 17/68=1/4<1/3=35/105<35/103

c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)

\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)

2018*2019<2019*2020

=>-1/2018*2019<-1/2019*2020

=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)

5 tháng 11 2021

ko biết

26 tháng 1 2022

:D

17 tháng 4 2021

Ta có: B = (2018 + 2019)/(2019 + 2020) = (2018 + 2019)/4039 = 2018/4039 + 2019/4039
Ta thấy : 2018/2019 > 2018/4039
            2019/2020 > 2019/4039
=> 2018/2019 + 2019/2020 > 2018/4039 > 2019/4039
=> 2018/2019 + 2019/2020 > (2018 + 2019)/(2019 + 2020)
=> A  > B

11 tháng 5 2019

\(A=\frac{2018^{2019}-1}{2018^{2019}+1}=\frac{2018^{2019}+1-2}{2018^{2019}+1}=\frac{2018^{2019}+1}{2018^{2019}+1}-\frac{2}{2018^{2019}+1}=1-\frac{2}{2018^{2019}+1}\)

\(B=\frac{2018^{2019}}{2018^{2019}+2}=\frac{2018^{2019}+2-2}{2018^{2019}+2}=\frac{2018^{2019}+2}{2018^{2019}+2}-\frac{2}{2018^{2019}+2}=1-\frac{2}{2018^{2019}+2}\)

Ta có: \(\frac{2}{2018^{2019}+1}>\frac{2}{2018^{2019}+2}\)

\(\Rightarrow1-\frac{2}{2018^{2019}+1}< 1-\frac{2}{2018^{2019}+2}\)

\(\Rightarrow A< B\)

Vậy .....

17 tháng 1 2018

\(\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

Ta thấy      \(2017.2018< 2018.2019\)

nên      \(\frac{1}{2017.1018}>\frac{1}{2018.2019}\)

\(\Rightarrow\)\(1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

Vậy      \(\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)

13 tháng 8 2019

a, Vì  A, B < 1

\(A=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)

b, \(B=\frac{2018^{2018}+1}{2018^{2019}+1}< 1< \frac{2018^{2019}+1}{2018^{2018}+1}=A\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

Lời giải:

Ta có: 

\(A+1=\frac{2019^{2019}+2019^{2020}}{2019^{2019}-1}=\frac{2019^{2019}.2020}{2019^{2019}-1}\)

\(B+1=\frac{2019^{2019}+2019^{2018}}{2019^{2018}-1}=\frac{2019^{2018}.2020}{2019^{2018}-1}\) \(=\frac{2019^{2019}.2020}{2019^{2019}-2019}>\frac{2019^{2019}.2020}{2019^{2019}-1}\)

$\Rightarrow B+1>A+1$

$\Rightarrow B>A$

12 tháng 4 2018

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A