\(3\sqrt{7}-2\sqrt{17}\) và \(\sqrt{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

a) Ta có 290>289

<=>  \(\sqrt{290}\)   >       \(\sqrt{289}\)

<=>  \(\sqrt{290}\)   >        17

Vậy ..........

26 tháng 7 2019

\(a,290>289\)

\(\Rightarrow\sqrt{290}>\sqrt{289}\)

\(\Rightarrow\sqrt{290}>17\)

\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

22 tháng 10 2016

a] < b] < c] >

28 tháng 10 2016

Mít cứ bình phương lên là ok

(2\(\sqrt{7}\))2 =28 (1)

(3\(\sqrt{3}\))2 =27 (2)

vậy (1) > (2)

cứ thế mà làm là hết mít

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

30 tháng 8 2016

a)

Ta có

\(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

b) Ta có

 

\(\sqrt{17}+\sqrt{5}+9>\sqrt{16}+\sqrt{4}+9=4+2+9=15\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+9>15\)

Mặt khác

\(\sqrt{115}< \sqrt{225}=15\)

Mà \(\sqrt{17}+\sqrt{5}+9>15\)

\(\Rightarrow\sqrt{115}< \sqrt{17}+\sqrt{5}+9\)

30 tháng 8 2016

ta có \(\sqrt{7}< \sqrt{9}\)

và \(\sqrt{15}< \sqrt{16}\)

=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

mà \(\sqrt{9}+\sqrt{16}=3+4=7\)

=> \(\sqrt{7}+\sqrt{15}< 7\)

5 tháng 11 2017

a ) \(\sqrt{7}+\sqrt{15}vs7\)

=> \(\sqrt{7}+\sqrt{15}< 7\)

b ) \(\sqrt{17}+\sqrt{5}+1vs\sqrt{45}\)

=> \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

5 tháng 11 2017

b, \(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)

\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

17 tháng 11 2016

Ta so sánh: \(\sqrt{3}-\sqrt{2}\)\(\sqrt{7}-\sqrt{6}\)

\(\sqrt{3}-\sqrt{2}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\frac{3-2}{\sqrt{3}+\sqrt{2}}=\frac{1}{\sqrt{3}+\sqrt{2}}\)

\(\sqrt{7}-\sqrt{6}=\frac{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\sqrt{7}+\sqrt{6}}=\frac{7-6}{\sqrt{7}+\sqrt{6}}=\frac{1}{\sqrt{7}+\sqrt{6}}\)

\(\sqrt{3}+\sqrt{2}< \sqrt{7}+\sqrt{6}\)

nên \(\frac{1}{\sqrt{3}+\sqrt{2}}>\frac{1}{\sqrt{7}+\sqrt{6}}\)

\(\Rightarrow\sqrt{3}-\sqrt{2}>\sqrt{7}-\sqrt{6}\)

\(\Rightarrow\sqrt{3}+\sqrt{6}>\sqrt{7}+\sqrt{2}\) hay x > y

10 tháng 12 2016

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)