Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a)\)\(6+2\sqrt{2}\) và 9
\(\Rightarrow9-6-2\sqrt{2}=3-2\sqrt{2}\)
\(=2-2\sqrt{2}+1\)
\(=(\sqrt{2}-1)^2>0\)
\(\Rightarrow9-6-2\sqrt{2}>0\Rightarrow9>6+2\sqrt{2}\)
\(b)\sqrt{2}+\sqrt{3}\)và 3
\(\Rightarrow\sqrt{[(\sqrt{2}+\sqrt{3})}^2]\)
\(=\sqrt{(5+2\sqrt{6}})\)
\(=\sqrt{(5+\sqrt{24}})=3=\sqrt{9}=\sqrt{(5+\sqrt{16})}\)
\(=\sqrt{(5+24)}>\sqrt{(5+16)}\Rightarrow\sqrt{2+\sqrt{3}}>3\)
\(c)\sqrt{11}-\sqrt{3}\)và 2
\(=\sqrt{11}-\sqrt{3}=\sqrt{[(\sqrt{11}-\sqrt{3}})^2=\sqrt{(14-2\sqrt{33})}\); \(2=\sqrt{4}=\sqrt{(14-10)}=\sqrt{(14-2\sqrt{25})}\Rightarrow\sqrt{(14-2\sqrt{33})}< \sqrt{(14-2\sqrt{25})}\)
\(\Rightarrow\sqrt{11}-\sqrt{3}< 2\)
Chúc bạn học tốt~
a) \(6+2\sqrt{2}=6+\sqrt{2^2.2}=6+\sqrt{8}\)
\(9=6+3=6+\sqrt{9}\)
Ta có: \(\sqrt{9}>\sqrt{8}\)
\(\Rightarrow6+\sqrt{3}>6+\sqrt{8}\)
\(\Rightarrow9>6+2\sqrt{2}\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+2.\sqrt{2}.\sqrt{3}+3=5+2.\sqrt{6}=5+\sqrt{2^2.6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
Ta có: \(\sqrt{24}>\sqrt{16}\)
\(\Rightarrow5+\sqrt{24}>5+\sqrt{16}\)
\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>3^2\)
\(\Rightarrow\sqrt{2}+\sqrt{3}>3\)
c) làm tương tự như câu c
mk ms học lớp 7 nên có gì sai sót thì bỏ qua nha
\(\frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=2+\sqrt{3}\)
\(\frac{2}{\sqrt{2}-1}=\frac{2\sqrt{2}+2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=\sqrt{8}+2\)
\(\Rightarrow\frac{2}{\sqrt{2}-1}>\frac{1+\sqrt{3}}{\sqrt{3}-1}\)
Ta có: \(\sqrt{11}< 4\)\(\Rightarrow-3\sqrt{11}>-3\times4=-12\)
ta xét hiệu A - B= \(\left(\sqrt{10}+\sqrt{13}\right)-\left(\sqrt{11}+\sqrt{12}\right)\) = \(\left(\sqrt{13}-\sqrt{12}\right)-\left(\sqrt{11}-\sqrt{10}\right)\)
\(\le\sqrt{13-12}-\sqrt{11-10}=1-1=0\)
a) Ta có : \(\left(\sqrt{11}+\sqrt{13}\right)^2=11+2\sqrt{11.13}+13=24+2\sqrt{143}\)
\(\left(2.\sqrt{12}\right)^2=4.12=24+2.\sqrt{144}\)
mà \(\sqrt{144}>\sqrt{143}\Rightarrow24+2\sqrt{144}>24+2\sqrt{143}\Rightarrow\left(2.\sqrt{12}\right)^2>\left(\sqrt{11}+\sqrt{13}\right)^2\)
\(2.\sqrt{12}>\sqrt{11}+\sqrt{13}\)
b) Ta có : \(\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{69}\right)\)
\(\Leftrightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}\)
Từ kq câu a \(\Rightarrow\sqrt{69}+\sqrt{67}< 2\sqrt{68}\)
\(\Rightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}< 0\)
\(\Rightarrow\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{67}\right)< 0\)
\(\Rightarrow\sqrt{69}-\sqrt{68}< \sqrt{68}-\sqrt{67}\)
a, \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\Rightarrow1+1< \sqrt{2}+1\Rightarrow2< \sqrt{2}+1\)
c, \(4>3=>\sqrt{4}>\sqrt{3}=>\sqrt{4}-1>\sqrt{3}-1\Rightarrow1>\sqrt{3}-1\)
d, \(16>11=>\sqrt{16}>\sqrt{11}\Rightarrow4>\sqrt{11}=>4.\left(-3\right)< \sqrt{11}.\left(-3\right)\)
\(=>-12< -3.\sqrt{11}\)
\(-3\sqrt{11}=-\sqrt{99}\)Còn
\(-12=-\sqrt{144}\)
Vì \(\sqrt{99}< \sqrt{144}=>-\sqrt{99}>-\sqrt{144}\)
Vậy \(-3\sqrt{11}>-12\)