
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(3^{400}=\left(3^2\right)^{200}=9^{200}\)(1)
\(2^{600}=\left(2^3\right)^{200}=8^{200}\)(2)
Từ (1) và (2) \(\Rightarrow3^{400}>2^{600}\)

iam_Mai ơi! \(\frac{-83}{317}\)<\(\frac{-83}{111}\)là sai vì:
83/317< 83/111 => -83/317 > -83/111

a: \(5^{9765625}=5^{5^{10}}=\left(5^5\right)^{10}=3125^{10}\)
\(4^{10000000}=4^{10^7}=\left(4^7\right)^{10}=16384^{10}\)
mà 3125<16384
nên \(5^{9765625}<4^{10000000}\)
b: \(3^{5000000}=\left(3^5\right)^{1000000}=243^{1000000}\)
\(2^{6000000}=\left(2^6\right)^{1000000}=64^{1000000}\)
mà 243>64
nên \(3^{5000000}>2^{6000000}\)
c: \(10^{1000000}=\left(10^5\right)^{200000}=100000^{200000}\)
\(8^{1200000}=\left(8^6\right)^{200000}=262144^{200000}\)
mà 100000<262144
nên \(10^{1000000}<8^{1200000}\)
Để so sánh các số trong các cặp này, ta sẽ tiến hành phân tích các giá trị một cách cụ thể.
a) So sánh \(5^{9765625}\) và \(4^{10000000}\)
Để so sánh hai số này, một cách tiếp cận là nhìn vào cơ số của chúng và mối quan hệ giữa chúng. Cả \(5^{9765625}\) và \(4^{10000000}\) đều là số rất lớn, nhưng cơ số của chúng có sự khác biệt:
- \(5^{9765625}\) có cơ số là 5.
- \(4^{10000000}\) có cơ số là 4.
Vì \(5 > 4\), và \(9765625 < 10000000\), ta có thể giả sử rằng \(5^{9765625}\) sẽ lớn hơn \(4^{10000000}\). Điều này đúng vì dù số mũ của \(4^{10000000}\) lớn hơn, cơ số của \(5^{9765625}\) lớn hơn nhiều, ảnh hưởng mạnh hơn đến giá trị cuối cùng.
Kết luận: \(5^{9765625} > 4^{10000000}\).
b) So sánh \(3^{5000000}\) và \(2^{6000000}\)
Tương tự như trong câu a, ta sẽ so sánh các cơ số và số mũ:
- \(3^{5000000}\) có cơ số là 3.
- \(2^{6000000}\) có cơ số là 2.
Mặc dù \(2^{6000000}\) có số mũ lớn hơn, cơ số 3 của \(3^{5000000}\) lớn hơn cơ số 2. Do đó, \(3^{5000000}\) sẽ lớn hơn \(2^{6000000}\) vì cơ số lớn hơn tác động mạnh hơn số mũ, mặc dù số mũ của \(2^{6000000}\) lớn hơn.
Kết luận: \(3^{5000000} > 2^{6000000}\).
c) So sánh \(1^{}\) và \(8^{}\)
- \(1^{} = 1\) (vì bất kỳ số nào mũ bao nhiêu cũng bằng 1 nếu cơ số là 1).
- \(8^{}\) là một số rất lớn vì \(8 > 1\) và số mũ rất lớn.
Vì vậy, rõ ràng \(1^{} = 1\) sẽ nhỏ hơn \(8^{}\), vì \(8^{}\) là một số cực kỳ lớn.
Kết luận: \(1^{} < 8^{}\).
Tóm tắt kết quả:
a) \(5^{9765625} > 4^{10000000}\)
b) \(3^{5000000} > 2^{6000000}\)
c) \(1^{} < 8^{}\)


1)
2600=(26)100=64100
3400=(34)100=81100
Vì 81>64 =>81100>64100
3)GTNN A=-1
\(2^{600}=2^{6^{100}}\)= \(2^6\)và \(3^{400}=\)\(3^{4^{100}}\) =\(3^4\)
Vì \(2^6< 3^4\)nên \(2^{600}< 3^{400}\)

a/ \(3^{600}=\left(3^3\right)^{200}=\left(27\right)^{200}\)
\(4^{400}=\left(4^2\right)^{200}=\left(16\right)^{200}\)
\(\Leftrightarrow3^{600}>4^{400}\)
b/ \(4^{32}\)
\(16^{15}=\left(4^2\right)^{15}=4^{30}\)
\(\Leftrightarrow4^{32}>16^{15}\)
a)\(3^{600}\) = \(\left(3^3\right)^{200}\) = \(27^{200}\)
\(4^{400}\) = \(\left(4^2\right)^{200}\) = \(16^{200}\)
Vì \(27>16\Rightarrow27^{200}>16^{200}=3^{600}>4^{400}\)
Vậy\(3^{600}>4^{400}\)
b) \(32^{10}=\left(2^5\right)^{10}=2^{50}
\)
\(16^{15}=\left(2^4\right)^{15}=2^{60}\)
Vì \(50< 60\Rightarrow2^{50}< 2^{60}\Rightarrow32^{10}< 16^{15}\)
Vậy\(32^{10}< 16^{15}\)
\(3^{600};4^{400}\)
\(3^{600}=\left(3^3\right)^{200}\)
\(4^{400}=\left(4^2\right)^{200}\)
Vì : \(27^{200}>16^{200}\)
\(\Rightarrow3^{600}>4^{400}\)
Ta có:
\(3^{600}=3^{3\times200}=\left(3^3\right)^{200}=27^{200}\)
\(4^{400}=4^{2\times200}=\left(4^2\right)^{200}=16^{200}\)
Vì 27 > 16 \(\Rightarrow27^{200}>16^{200}\Leftrightarrow3^{600}>4^{400}\)