Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
=> ....
C2: ta có: 92000 = (32)2000= 34000
b) ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
=> 8111 < 9111
=> 2332 < 3223
Ta có 3^21>3^20
suy ra:3^20=(3^2)^10=9^10
2^31>2^30
suy ra:(2^3)^10=8^10
vì 8<9.Suy ra 2^31<3^21
2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
2332<8111<9111<3223
\(\Rightarrow\)2332 < 3223
Vậy 2332< 3223
ta có : 2^332 <2^333= 8^111
3^223 >3^222= 9^111
=> 2^332 < 3^223
1.
Ta có 3223 > 3222 = (32)111 = 9111. (1)
2332 < 2333 = (23)111 = 8111. (2)
Từ (1) và (2) suy ra: 2332 < 8111 < 9111 < 3223.
Vậy 2332 < 3223
2.
Cách 1: 92000 = (32)2000 = 34000
Cách 2: 34000 = (34)1000 = 811000. (1)
92000 = (92)1000 = 811000. (2)
Từ (1) và (2) suy ra 34000 = 92000 .
3.
Đặt A = 22009 + 22008 + ... + 21 + 20
Ta có 2A = 22010 + 22009 + ... + 22 + 21.
Suy ra 2A - A = 22010 - 20 = 22010 - 1.
Do đó M = 22010 - A = 22010 - (22010 - 1) = 1.
trả lời;
1)23322332 và 32233223
23322332 <23332333 mà 2333=(23)111=8111
32233223 >32223222 mà 3222=(32)111=9111
từ (1 và 2),suy ra:8111<9111 hay 2332<3223
a) Ta có:3>2
\(\Rightarrow3^{200}>2^{200}\)
b) Ta có:\(9^{12}=\left(9^3\right)^4=729^4\)
\(26^8=\left(26^2\right)^4=676^4\)
Vì: 729>676
\(\Rightarrow729^4>676^4\)
Hay: \(9^{12}>26^8\)
a) 291 và 535
ta có: 291 < 290 = (25)18 = 3218
lại có: 3218 > 2518 = (52)18 = 536 > 535
vậy 291 > 535
b) 34000 và 92000
ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
vậy 34000 = 92000
c) 2332 và 3223
ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
mà 8111 < 9111
vậy 2332 < 3223
a) 291 và 535
Ta có: 291 < 290 = (25)18 = 3218
Lại có: 3218 > 2518 = (52)18 = 536 > 535
Vậy 291 > 535
b) 34000 và 92000
Ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
Vậy 34000 = 92000
c) 2332 và 3223
Ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Mà 8111 < 9111
Vậy 2332 < 3223
a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Mà \(3^{4000}=3^{4000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
Vậy \(3^{4000}=9^{2000}\)
b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{333} < 3^{222}\)
\(\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
a) \(3^{4000}\) và \(9^{2000}\)
ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)
=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)
b)\(2^{332}\) và \(3^{223}\)
\(2^{332}\) <\(2^{333}\) mà \(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)
\(3^{223}\) >\(3^{222}\) mà \(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)
từ (1 và 2),suy ra:8111<9111 hay 2332<3223