Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{203}=3^{200}.3^3=9^{100}.27\)
\(2^{302}=2^{300}.2^2=8^{100}.4\)
Vì \(9^{100}>8^{100}\); \(27>4\)\(\Rightarrow3^{203}>2^{302}\)
\(3^{203}>3^{202}=\left(3^2\right)^{101}=9^{101}\)
\(2^{302}< 2^{303}=\left(2^3\right)^{101}=8^{101}\)
\(\Rightarrow2^{302}< 8^{101}< 9^{101}< 3^{203}\)
3203=3200.33=(32)100.27=9100.27
2302=2300.22=(23)100.4=8100.4
Vì 9100>8100
Và 27>4
=> 9100.27>8100.4
=>3203>2302
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Phương Quyên
a) 22014 < 31343
b) 3111 > 1744
c) A > 1
d) B > 1212
k mk nha. CHÚC BẠN HỌC TỐT. ^_^
A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)
trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:
A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),
Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)
Vậy A>\(-\frac{1}{2}\)
Ta có a+2/b+2 = a/b+2 + 2/b+2 = a(b+2)/b+2 + 2(b+2)/b+2 = a+2
Do a+2 > a/b => a+2/b+2 >a/b
mik làm đại ko bik đúng hay sai đâu nha
Xét tích : \(a\left(b+2\right)=ab+2a\)
\(b\left(a+2\right)=ab+2b\)
Nếu \(a>b\)thì \(ab+2a>ab+2b\)
hay \(a\left(b+2\right)>b\left(a+2\right)\)
\(\Rightarrow\frac{a}{b}>\frac{a+2}{b+2}\)
Nếu \(a< b\)thì \(ab+2a< ab+2b\)
hay \(a\left(b+2\right)< b\left(a+2\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+2}{b+2}\)
Nếu \(a=b\)thì \(ab+2a=ab+2b\)
hay \(a\left(b+2\right)=b\left(a+2\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a+2}{b+2}\)
\(\left(\frac{-2}{3}\right)^3=\frac{-8}{27}\)
\(\frac{\left(-2\right)^3}{3^3}=\frac{-8}{27}\)
\(=>\left(-\frac{2}{3}\right)^3=\frac{\left(-2\right)^3}{3^3}\)
Áp dụng câu trên ta được :
\(\frac{10^5}{2^5}=\left(\frac{10}{2}\right)^5\)
Ủng hộ nha
\(3^{203}\) và \(2^{302}\)
Ta có:
\(3^{203}>3^{202}=\left(3^2\right)^{101}=9^{101}.\)
\(2^{302}< 2^{303}=\left(2^3\right)^{101}=8^{101}.\)
Vì \(9>8\) nên \(9^{101}>8^{101}.\)
\(\Rightarrow3^{203}>2^{302}.\)
Chúc bạn học tốt!
thankss nhaa