Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)
\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)
Vì \(27>25\) nên \(\left(-2\right)^{27}< \left(-2\right)^{25}\)
\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)
Vậy \(\left(-8\right)^9< \left(-32\right)^5\).
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
thấy (-32)^9 và (-18)^13 là 2 số âm
trước tiên ta so sánh: 32^9 và 18^13
32^9 = (2^5)^9 = 2^45 = 2^13.2^32
18^13 = 2^13.9^13 = 2^13.3^26
Có: 8 < 9 => 2^3 < 3^2 => (2^3)^5 < (3^2)^5 => 2^15 < 3^10 và 2 < 3^3
=> 2.2^15 < 3^3.3^10 => 2^16 < 3^13 => (2^16)^2 < (3^13)^2 => 2^32 < 3^26
=> 2^13.2^32 < 2^13.3^26 => 2^45 < 2^13.9^13 => 32^9 < 18^13
=> -32^9 > -18^13 => (-32)^9 > (-18)^13
Bài giải
Ta có : \(9^{99}=\left(9^{11}\right)^9\)
Vì \(\left(9^{11}\right)^9>99^9\text{ }\left[\left(81\cdot9^9\right)^9>99^9\right]\text{ }\Rightarrow\text{ }9^{99}>99^9\)
Ta có:
\(\left(-32\right)^9=\left(-2^5\right)^9=-2^{45}=-2^{13}.2^{32}\)
\(\left(-18\right)^{13}=\left(-2.3^2\right)^{13}=-2^{13}.3^{26}\)
\(-\frac{9}{5}=\frac{-54}{30},\frac{11}{-6}=-\frac{55}{30}\)
\(-\frac{54}{30}>-\frac{55}{30}\Rightarrow-\frac{9}{5}>-\frac{11}{6}\)
\(-\frac{6}{11}=-\frac{30}{55}\)
32 9 và 18 13 18 13 = 2 13 .9 13 = 2 13 .3 2.13 = 2 13. .9 13 > 2 13 .8 13 = 2 13 .2 3.13 = 2 52 > 2 45 = 2 5.9 = 32 9