Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}\)
\(\Rightarrow\text{ }4^{100}< 2^{202}\)
b, \(3^0=1< 5^8\)
\(3^0< 5^8\)
c, \(\left(0,6\right)^0=1\)
\(\left(-0,9\right)^6=\left(0,9\right)^6\)
\(\Rightarrow\text{ }\left(0,6\right)^0< \left(-0,9\right)^6\)
d,
e, \(8^{12}=\left(2^3\right)^{12}=2^{36}=2^{16}\cdot2^{20}=2^{16}\cdot\left(2^4\right)^5=2^{16}\cdot16^5\)
\(12^8=\left(2^2\cdot3\right)^8=2^{16}\cdot3^8=2^{16}\cdot\left(3^2\right)^4=2^{16}\cdot9^4\)
Vì \(2^{16}\cdot16^5>2^{16}\cdot9^4\text{ }\Rightarrow\text{ }8^{12}>12^8\)
a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)
b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)
c) \(27^{40}=3^{3^{40}}=3^{120}\)
\(64^{60}=8^{2^{60}}=8^{120}\)
Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)
con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
a) \(11^9+12^9+13^9+14^9+15^9+16^9\)
\(=11^{4.2}.11+12^{4.2}.12+13^{4.2}.13+14^{4.2}.14+15^9+16^9\)
\(=...1.11+...6.12+...1.13+...6.14+...5+...6\)
\(=...1+...2+...3+...4+...5+...6\)
\(=...1\)
Vậy biểu thức trên có chũ số tận cùng là 1
b) \(25^7+26^7+27^7+28^7+29^7+29^7+30^7+31^7\)
\(=...5+...6+27^4.27^3+28^4.28^3+29^4.29^3+29^4.29^3+...0+...1\)
\(=...5+...6+...3+...8+...9+...9+...0+...1\)
\(=...1\)
Vậy biểu thức trên có chữ số tận cùng là 1
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
a) Ta có :
2727>2726=(272)13=72913>243132727>2726=(272)13=72913>24313
⇒2727>24313⇒2727>24313
⇒−2727<−24313⇒−2727<−24313
⇒(−27)27<(−243)13⇒(−27)27<(−243)13
b) (18)25>(18)26=(182)13=(164)13>(1128)13(81)25>(81)26=(821)13=(641)13>(1281)13
⇒(18)25>(1128)13⇒(81)25>(1281)13
⇒(−18)25<(−1128)13⇒(−81)25<(−1281)13
c) 450=(45)10=102410450=(45)10=102410
830=(83)10=51210<102410830=(83)10=51210<102410
⇒450>830⇒450>830
d) (19)17<(19)12<(127)12(91)17<(91)12<(271)12
⇒(19)17<(127)12⇒(91)17<(271)12
a, 12^1200 > 2^100 Vì cả cơ số lẫn số mũ đều lớn hơn
b, 9^99= (9^11)^9
Vì 9^11> 99 nêm 99^11^9> 99^9
Vậy 9^99> 99^9
Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)
Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)
=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Bài làm :
Cách 1:
Ta có :
\(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Cách 2 :
Nhận thấy :
- 29 < 39
- 32010 > 22010
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
31mu 17 lon hon
mình cần lời giải nha các bạn