Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Mà \(3^{4000}=3^{4000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
Vậy \(3^{4000}=9^{2000}\)
b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{333} < 3^{222}\)
\(\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
a) \(3^{4000}\) và \(9^{2000}\)
ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)
=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)
b)\(2^{332}\) và \(3^{223}\)
\(2^{332}\) <\(2^{333}\) mà \(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)
\(3^{223}\) >\(3^{222}\) mà \(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)
từ (1 và 2),suy ra:8111<9111 hay 2332<3223
\(\frac{2}{3}^{50}=\frac{2}{3}^{45}x\frac{2}{3}^5\)
\(\frac{2}{3}^5=\frac{2}{3}.\frac{2}{3}.\frac{2}{3}.\frac{2}{3}.\frac{2}{3}=\frac{32}{243}\)
Đến đây bạn tự làm nhé
3240 = 33.80 = (33)80 = 2780
5160 = 52.80 = (52)80 = 2580
Có 27 > 25
=> 2780 > 2580
=> 3240 > 5160
Ta có : \(3^{240}=\left(3^3\right)^{80}=27^{80}\)
\(5^{160}=\left(5^2\right)^{80}=25^{80}\)
Vì \(27>25\)
\(\Rightarrow27^{80}>25^{80}\)
\(\Rightarrow3^{240}>5^{160}\)
k mk nha ho anh dung
Sửa đề: 5^56 và 3^84
5^56=25^28
3^84=27^28
=>5^56<3^84
ta có 2^603=(2^3)^201=8^201
3^402=(3^2)^201=9^201
vì 8^201<9^201=> 2^603<3^402
Ta có :
\(2^{603}=\left(2^3\right)^{201}=8^{201}\)
\(3^{402}=\left(3^2\right)^{201}=9^{201}\)
Mà \(8< 9\)
=>\(8^{201}< 9^{201}\)
Hay \(2^{603}< 3^{402}\)
Vậy ...
A(0;−1)A(0;−1)∈(C):y=ax+bx−1∈(C):y=ax+bx−1⇒b−1=−1⇔b=1⇒b−1=−1⇔b=1.
Ta có y′=−a−b(x−1)2y′=−a−b(x−1)2. Hệ số góc của tiếp tuyến với đồ thị tại điểm AA là k=y′(0)=−a−b=−3k=y′(0)=−a−b=−3⇔a=3−b=2⇔a=3−b=2.
-2,3653 = -2,3653 nha