Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^a+9b=183\)
Ta thấy : \(9b⋮9,183⋮̸9\)
\(\Rightarrow3^a⋮̸9\)
\(\Rightarrow a< 2\)
\(\Rightarrow a\in\left\{0,1\right\}\)
+) Với \(a=0\Rightarrow1+9b=182\Rightarrow b=\frac{181}{9}\) ( loại )
+) Với \(a=1\Rightarrow3+8b=183\Rightarrow b=20\) ( chọn )
Vậy : \(\left(a,b\right)=\left(1,20\right)\)
Sửa đề; \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
\(\Leftrightarrow x-357=0\)
hay x=357
\(A=\left(2x+\frac{1}{3}\right)^4-1\)
\(=\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\ge-1\)
Dấu " = "xảy ra khi và chỉ khi \(2x+\frac{1}{3}=0\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{6}\)
Vậy \(Min_A=-1\) khi và chỉ khi \(x=-\frac{1}{6}\)
bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)
\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)
vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)
c2
ta có
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
bài 5
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
3) M = 22010 - (22009 + 22008 + .... + 21 + 20)
Đặt N = 22009 + 22008 + .... + 21 + 20
=> 2N = 22010 + 22009 + .... + 22 + 21
=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + .... + 21 + 20)
=> N = 22010 - 1
Khi đó M = 22010 - (22010 - 1) = 1
4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000
34000 = 92000
C2 Ta có : 34000 = (34)1000 = 811000 (1)
Lại có 92000 = (92)1000 = 811000 (2)
Từ (1) (2) => 34000 = 92000
5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223
=> 2332 < 3223
2) Ta có n150 < 5225
=> (n5)75 < (53)75
=> n5 < 53
=> n5 < 125
Vì n là số nguyên lớn nhất => n = 2
1) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
2) \(3^{21}=3^{20}\cdot3=9^{10}\cdot3\)
\(2^{31}=2^{30}\cdot2=8^{10}\cdot2\)
mà \(9^{10}\cdot3>8^{10}\cdot2\)=> tự viết tiếp
3) đợi chút
430 = (43)10 = 6410 > 4810 = ( 2 . 24 )10 = ( 210 ) . ( 2410 ) > 3 . 2410
=> 230 + 330 + 430 > 3 . 2410
.
Mít cứ bình phương lên là ok
(2\(\sqrt{7}\))2 =28 (1)
(3\(\sqrt{3}\))2 =27 (2)
vậy (1) > (2)
cứ thế mà làm là hết mít
a ) \(\sqrt{37}\) và \(6\)
Ta có : \(6=\sqrt{36}\)
mà \(\sqrt{36}< \sqrt{37}\)
\(\Rightarrow\sqrt{37}>6\)
b ) \(2\sqrt{3}\) và \(3\sqrt{2}\)
Ta có : \(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
mà : \(\sqrt{12}< \sqrt{18}\)
\(\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
c ) \(\sqrt{63}+\sqrt{35}\) và \(14\)
Ta có : \(\sqrt{63}< \sqrt{64}=8\) và \(\sqrt{35}< \sqrt{36}=6\)
\(\Rightarrow\sqrt{63}+\sqrt{35}< 8+6=14\)
Ta có :
Vì số \(2^{323}\) và \(3^{323}\) có số mũ bằng nhau ⇒ Ta so sánh phần cơ số
Vì \(2< 3\Rightarrow2^{323}< 3^{323}\)
Vậy \(2^{323}< 3^{323}\)
Ta có :
Số mũ bằng nhau
2 < 3
Vậy suy ra \(2^{323}< 3^{323}\)
Mà mik nghĩ là sai đề bn à.