K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

\(2^{301}=\left(2^3\right)^{100}.2=8^{100}.2\)

\(3^{201}=\left(3^2\right)^{100}.3=9^{100}.3\)

Dễ thấy \(8^{100}< 9^{100}\)

\(2< 3\)

\(\Rightarrow8^{100}.2< 9^{100}.3\)

\(2^{301}< 3^{201}\)

2 tháng 12 2016

Ta có: 2301 = 2300 . 2 = ( 23) 100 . 2 = 8100 . 2

3201 = 3200 . 3 = (32) 100 . 3 = 9100 . 3

Do 8 < 9 => 8100 < 9100 ; 2 < 3 nên:

=> 8100 . 2 < 9100 . 3

=> 2301 < 3201

Chúc bn hk tốt

15 tháng 11 2018

Ta có :

\(2^{195}=\left(2^3\right)^{65}=8^{65}\) 

\(3^{130}=\left(3^2\right)^{65}=9^{65}\)

Ta thấy  \(8^{65}< 9^{65}\)

=> \(2^{195}< 3^{130}\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:

$2^{299}< 2^{300}=(2^3)^{100}=8^{100}$

$3^{201}> 3^{200}=(3^2)^{100}=9^{100}$

$\Rightarrow 3^{201}> 9^{100}> 8^{100}> 2^{299}$

7 tháng 12 2019

Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)

\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)

\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)

\(\Rightarrow2A=3^{201}-1\)

\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)

Vậy A < B

7 tháng 12 2019

Ta có : A = 1 + 3 + 3+ ... + 3200

\(\Leftrightarrow\)2A = 3 + 3+ 33 + ... + 3201

Lấy 2A - A = ( 3 + 32 + 33 + ... + 3201 ) - ( 1 + 3 + 3+ ... + 3200 )

\(\Rightarrow\)A = 3201 - 1

Ta thấy : 3201 - 1 < 3201

\(\Leftrightarrow\)A < B

28 tháng 11 2016

2 ^ 90 = 2 ^ 10 x 9 = ( 2 ^ 10 ) ^ 9 = 1024 ^ 9

5 ^ 36 = 5 ^ 4 x 9 = ( 5 ^ 4 ) ^ 9 = 625 ^ 9 

Vi 1024 > 625 nen 1024 ^ 9 > 625 ^ 9 hay 2 ^ 90 > 5 ^ 36

28 tháng 11 2016

290=(25)18=3218

536=(52)18=2518

Vì 32>25 nên 3218>2518

Do đó 290>536

Kick cho mình nha!

14 tháng 6 2018

a) \(\frac{-7}{9}và\frac{3}{-8}\)

Ta có: \(\frac{-7}{9}=\frac{-56}{72}\)

\(\frac{3}{-8}=\frac{-3}{8}=\frac{-21}{72}\)

 \(Vì\frac{-56}{72}< \frac{-21}{72}nên\frac{-7}{9}< \frac{3}{-8}\)

b)\(\frac{209}{310}và\frac{-718}{599}\)

Ta có: \(\frac{209}{310}>0\)

\(\frac{-718}{599}< 0\)

\(Vì\frac{209}{310}>0và\frac{-718}{599}< 0nên\frac{209}{310}>\frac{-718}{599}\)

14 tháng 6 2018

Bạn bấm máy tính ấy 

20 tháng 4 2020

H B C A D

a) xét  \(\Delta HAC:\widehat{H}=90^o\)

\(\Rightarrow AH^2+HC^2=AC^2\)(đlý pytago)(1)

xét tam giác \(BHC:\widehat{H}=90^o\)

\(BH^2+HC^2=BC^2\)(đlý pytago)(2)

vì \(A\in BH\Rightarrow AH< BH\Rightarrow AH^2< BH^2\)(3)

từ (1);(2) và (3) 

\(\Rightarrow BC^2>AC^2\Rightarrow BC>AC\)

b) xét tam giác \(AHD:\widehat{H}=90^o\)\(\Rightarrow AH^2+HD^2=AD^2\)(đ/lý pytago)(4)

lại có \(D\in HC\Rightarrow HD< HC\Rightarrow HD^2< HC^2\)(5)

từ  (2);(4) và (5)

=>\(BC^2>AD^2\Rightarrow BC>AD\)

30 tháng 10 2018

Ta có : \((0,5)^{201}>(0,5)^{200}=(0,5)^{2\cdot100}=(0,5^2)^{100}=(0,25)^{100}\)

Ta thấy : \((0,25)^{100}< (0,3)^{100}\)

\(\Rightarrow(0,3)^{100}>(0,5)^{201}\)

Chúc bạn học tốt :>