K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HA
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
0
PQ
So sánh :
a) 3300 + 4300 và 3.24100
b) \(\frac{2^{23}+1}{2^{24}+1}\) và \(\frac{2^{24}+1}{2^{25}+1}\)
0
MT
0
3 tháng 10 2018
a) \(2^{24}< 3^{16}\)
b) \(3^{34}>5^{20}\)
c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)
d) \(199^{20}>200^{15}\)
12 tháng 10 2017
3x24^100=(2x3x4)^100
=3x(3^100)x4^150
xet 4^300-3x24^100=
4^300-3x(3^100)x4^150=
(4^150)(4^150-3x3^100)>
(4^150)(3^150-3x3^100)>
(4^150)(3^100)(3^50-3)>0
==>.....
14 tháng 11 2016
Ta có :
2300 = (23)100 = 8100 < 9100 = (32)100 = 3200
=> 2300 < 3200
14 tháng 11 2016
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\) (1)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\) (2)
Từ (1) và (2)
\(\Rightarrow2^{300}< 3^{200}\)
Vậy \(2^{300}< 3^{200}\).
TT
0