K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 10 2016
Ta có : 2101 > 2100 = ( 210)10 = 102410 > 62510 = ( 54)10 = 540 > 539
Vậy 2101 > 539
( Bài này sử dụng lũy thừa trung gian bạn nhé )
BN
2
7 tháng 8 2015
hơ hơ nguyen thieu cong thanh giỏi thật : 2101 = 2102, ai làm đk ntn t cũng xin bái phục
7 tháng 6 2018
a )
2100+2100= 2100(1+1) =2100.2 = 2100+1= 2101
b)
3100+3100 = 3100(1+1) = 2.3100
3101= 3100.3
ta thấy 3. 3100 > 2.3100 Vậy 3101 > 3100+3100
c) 20177012 > 20172337.3 >>> 80002337
70122017 < 80002337
suy ra: 20177012 >>> 70122017
HD
3
3 tháng 4 2016
\(N=\frac{101^{103}+1}{101^{104}+1}<\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}\)
=> N < M
Ta có:
2^101 > 2^100 = (2^5)^20 = 32^20
5^39 < 5^40 = (5^2)^20 = 25^20
Do 32^20 > 25^20
=> 2^101 > 5^39
\(2^{101}< 2^{100}\Leftrightarrow\left(2^5\right)^{20}=32^{20}\)
\(5^{39}< 5^{40}\Leftrightarrow\left(5^2\right)^{20}=25^{20}\)
Do \(32^{20}>25^{20}\)
nên \(2^{101}>5^{39}\)
Vậy \(2^{101}>5^{39}\)