Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
\(\frac{2020}{2019}\)bé hơn \(\frac{2021}{2020}\)
vì 2020 bé hơn 2021
2019 nhỏ hơn 2020
Ta có : \(A.m=\frac{m\left(m^{2020+1}\right)}{m^{2021}-1}=\frac{m^{2021}+m}{m^{2021}-1}=1+\frac{m-1}{m^{2021}+1}\)
Tương tự ,ta có : \(B.m=1+\frac{m-1}{m^{2022}+1}\)
//Đề thiếu điều kiện của m nên không giải tiếp được =))
Lời giải:
Ta thấy: $\frac{2021^2+1}{2021}=2021+\frac{1}{2021}< 2022< 2022+\frac{1}{2022}=\frac{2022^2+1}{2022}$
$\Rightarrow \frac{2021}{2021^2+1}> \frac{2022}{2022^2+1}$
c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)
\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)
100^100+1<100^101+1
=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)
=>100C>100D
=>C>D
b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)
\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)
2020^2022+1>2020^2021+1(Do 2022>2021)
=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)
=>2020E<2020F
=>E<F
\(B=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=-\dfrac{2}{3}\)
\(B=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=\dfrac{1}{3}-\dfrac{3}{3}=-\dfrac{2}{3}\)
a: \(\dfrac{4}{9}=\dfrac{4\cdot2}{9\cdot2}=\dfrac{8}{18}< \dfrac{13}{18}\)
b: 34/-4=-8,5
Ta có: 8,5<8,6
=>-8,5>-8,6
=>\(\dfrac{34}{-4}>-8,6\)
c: \(\dfrac{2021}{2022}=1-\dfrac{1}{2022}\)
\(\dfrac{2022}{2023}=1-\dfrac{1}{2023}\)
Ta có: 2022<2023
=>\(\dfrac{1}{2022}>\dfrac{1}{2023}\)
=>\(-\dfrac{1}{2022}< -\dfrac{1}{2023}\)
=>\(-\dfrac{1}{2022}+1< -\dfrac{1}{2023}+1\)
=>\(\dfrac{2021}{2022}< \dfrac{2022}{2023}\)
2020/2021<2021/2022
2020/2021 = 1-1/2021
2021/2022 = 1-1/2022
vì 1/2021 > 1/2022 => 1-1/2021 < 1-1/2022 => 2020/2021 < 2021/2022