Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\sqrt{2018+\sqrt{2017}}+\sqrt{2017+\sqrt{2017}}};B=\frac{1}{\sqrt{2017+\sqrt{2016}}+\sqrt{2016+\sqrt{2016}}}\)
Phương pháp liên hợp nhé. đến đây dễ thấy rồi
\(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\)
=> \(\frac{1}{\sqrt{2016}+\sqrt{2015}}<\frac{1}{\sqrt{2015}+\sqrt{2014}}\)
=> \(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}-\sqrt{2015}\right)\left(\sqrt{2016}+\sqrt{2015}\right)}<\frac{\sqrt{2015}-\sqrt{2014}}{\left(\sqrt{2015}-\sqrt{2014}\right)\left(\sqrt{2015}+\sqrt{2014}\right)}\)
=> \(\sqrt{2016}-\sqrt{2015}<\sqrt{2015}-\sqrt{2014}\)
A = \(\frac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\frac{1}{\sqrt{2016}+\sqrt{2015}}\); B = \(\frac{2015-2014}{\sqrt{2015}+\sqrt{2014}}=\frac{1}{\sqrt{2015}+\sqrt{2014}}\)
Mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\) ( Vì \(\sqrt{2016}>\sqrt{2014}\))
Nên \(\frac{1}{\sqrt{2016}+\sqrt{2015}}<\frac{1}{\sqrt{2015}+\sqrt{2014}}\) => A < B
Ta đặt \(x=2015\), khi đó \(2014=x-1,2016=x+1.\) Ta có như sau
\(2014^2\cdot2016=\left(x-1\right)^2\left(x+1\right)=\left(x^2-1\right)\left(x-1\right)\)\(<\)\(x^2\cdot\left(x-1\right)\)\(<\)\(x^2\cdot x=2015^2\cdot2015\)
Suy ra \(2014^2\cdot2016<2015^2\cdot2015\to\sqrt{2014^2\cdot2016}<\sqrt{2015^2\cdot2015}\)
\(\to2014\cdot\sqrt{2016}<2015\cdot\sqrt{2015}\to\frac{2014}{\sqrt{2015}}<\frac{2015}{\sqrt{2016}}\to\frac{2014}{\sqrt{2015}}+1<\frac{2015}{\sqrt{2016}}+1\)
\(\to A<\frac{2015}{\sqrt{2016}}+1=\frac{2015+\sqrt{2016}}{\sqrt{2016}}=B\to A\)\(<\)\(B.\)
Xét hiệu \(D=\sqrt{2016}-\sqrt{2014}-\left(\sqrt{2017}-\sqrt{2016}\right)\)ta có:
\(D=\sqrt{2016}-\sqrt{2014}-\sqrt{2017}+\sqrt{2016}=2\sqrt{2016}-\sqrt{2014}-\sqrt{2017}\)
Ta thử so sánh \(2\sqrt{2016}\)và \(\sqrt{2014}+\sqrt{2017}\)
Ta có \(\left(\sqrt{2014}+\sqrt{2017}\right)^2=2014+2017+2\sqrt{2014.2017}\)
\(=4031+2\sqrt{\left(2015,5-1,5\right)\left(2015,5+1,5\right)}=4031+2\sqrt{\left(2015,5\right)^2-\left(1,5\right)^2}\)
Mặt khác \(\left(2\sqrt{2016}\right)^2=4.2016=2.2016+2.2016=4032+2\sqrt{2016^2}\)
Ta thấy 4032 > 4031 và 20162 > (2015,5)2 - (1,5)2 (hiển nhiên)
\(\Rightarrow4032+2\sqrt{2016^2}>4031+2\sqrt{\left(2015,5\right)^2-\left(1,5\right)^2}\)
\(\Leftrightarrow\left(2\sqrt{2016}\right)^2>\left(\sqrt{2014}+\sqrt{2017}\right)^2\)
\(\Leftrightarrow2\sqrt{2016}>\sqrt{2014}+\sqrt{2017}\)
\(\Rightarrow D>0\)
\(\Rightarrow\sqrt{2016}-\sqrt{2014}>\sqrt{2017}-\sqrt{2016}\)