K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

\(2011.2013+2012.2014\)

\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)

\(=2012^2-1+2013^2-1\)

\(=2012^2+2013^2-2\)

\(\Rightarrow2011.2013+2012.2014=2012^2+2013^2-2\)

6 tháng 4 2019

2011.2013+2012.2014

=(2013-2).2013+2012.(2012+2)

=20132-4026+20122+4024

=20132+20122+(-4026+4024)

=20132+20122-2

6 tháng 4 2019

Ta có:\(2011.2013+2012.2014\)

\(=\left(2013-2\right).2013+\left(2012+2\right).2012\)

\(=2013^2-4026+2012^2+4024\)

\(=2012^2+2013^2-2\)

nên hai phép tính trên bằng nhau.

23 tháng 7 2018

a) \(2011.2013+2012.2014\)

\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)

\(=2012^2-1+2013^2-1\)

\(=2012^2+2013^2-2\)

\(\Rightarrow2011.2013+2012.2014=2012^2+2013^2-2\)

b) \(\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9+1\right)\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^4-1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^8-1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{16}-1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{32}-1\right)\left(9^{32}+1\right)\)

\(=\dfrac{1}{10}\left(9^{64}-1\right)\)

\(=\dfrac{9^{64}-1}{10}\)

Ta có: \(9^{64}-1=\dfrac{10\left(9^{64}-1\right)}{10}\)

\(\dfrac{10\left(9^{64}-1\right)}{10}>\dfrac{9^{64}-1}{10}\)

\(\Rightarrow\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)< 9^{64}-1\)

c) Ta có:

\(\dfrac{x^2-y^2}{x^2+xy+y^2}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-xy}\left(1\right)\)

Vì x>y>0, ta có:

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\left(2\right)\)

Vì x>y>0 nên \(\left(x+y\right)^2-xy< \left(x+y\right)^2\left(3\right)\)

Từ (1), (2) và (3) suy ra:

\(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+xy+y^2}\)

18 tháng 9 2018

a) Ta có:

\(2011.2013+2012.2014\)

\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)

\(=2012^2-1+2013^2-1\)

\(=2012^2+2013^2-2\)

Vậy 2011.2013+2012.2014 = 20122 + 20132 - 2

23 tháng 6 2016

A = 2011.2013

A = 2011.(2012+1)

A = 2011.2012+2011

B = 20122

B = 2012.2012

B = (2011+1).2012

B = 2011.2012+2012

Vì 2011 < 2012

=> 2011.2012 + 2011 < 2011.2012 + 2012

=> A < B

25 tháng 9 2021

Vậy a<b nha bạn

20 tháng 9 2016

vế trái lớn hơn

3 tháng 7 2017

Ta có:

B=2012^2.

=>B=2012*2012.

=>B=2012*2011+2012.

=>B=2011*2012+2011+1.

=>B=2011*(2012+1)+1.

=>B=2011*2013+1.

Mà A=2011*2013.

Vậy A<B.

3 tháng 7 2017

Ta có: 

\(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)\)

\(=2012^2-1< 2012^2=B\)

VẬY A<B

23 tháng 7 2016

1) 1

2)Ta có: 2011 x 2013 + 2012 x 2014 =8100311

20122 + 20132 - 2 =8100311 . 

Vậy ta đã thấy 2 số bằng nhau

Kết luận : 2011 x 2013 + 2012 x 2014 = 20122+ 2013- 2

23 tháng 7 2016

1, \(B=3^{24}-\left(27^4+1\right)\left(9^6-1\right)\)

\(=\left(3^{12}\right)^2-\left(3^{12}+1\right)\left(3^{13}-1\right)\)

\(=\left(3^{12}\right)^2-\left[\left(3^{12}\right)^2-1\right]\)

\(=\left(3^{12}\right)^2-\left(3^{12}\right)^2+1\)

\(=1\)

Vậy \(B=1\)