Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
a)ĐKXĐ:x>=0;x khác 9
A=[\(\frac{\sqrt{x}}{\sqrt{x}-3}\) - \(\frac{3\sqrt{x}+9}{x-9}\)+ \(\frac{2\sqrt{x}}{\sqrt{x}+3}\)] \(\div\) [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1]
A=[\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-3\sqrt{x}-9+2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\)] \(\div\) [\(\frac{\left(2\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-x+9}{x-9}\)]
A=[\(\frac{3x-12\sqrt{x}-9}{x-9}\)].[\(\frac{x-9}{x-4\sqrt{x}+3}\)]
A=\(\frac{3x-12\sqrt{x}-9}{x-4\sqrt{x}+3}\)
a) ĐKXĐ: \(x\ge0;x\ne9\)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{x-9}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{x-9}\)
\(B=\frac{2x-6+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)
\(B=\frac{3x-6+15\sqrt{x}}{x-9}\)
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}< =0\)
Do đó: A<=2/3
\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+.......+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n}-1\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+........+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)
\(=\sqrt{2}-\sqrt{1}+...........+\sqrt{n}-\sqrt{n-1}\)
\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)
bài B tương tự
ĐKXĐ: x>=1 và x<>2
\(A=\dfrac{\sqrt{x-1}+\left|\sqrt{x-1}-1\right|+1}{\left|x-2\right|}\)
Trường hợp 1: \(\sqrt{x-1}>1\Leftrightarrow x>2\)
=>\(A=\dfrac{2\sqrt{x-1}}{\left|x-2\right|}\)
Trường hợp 2: 1<x<2
\(A=\dfrac{2}{\left|x-2\right|}\)
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
\(2< \sqrt{2}+1\)
\(1>\sqrt{3}-1\)