\(2-\sqrt{10}\) và \(3-\sqrt{15}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

Xét \(2-\sqrt{10}=\sqrt{2}\left(\sqrt{2}-\sqrt{5}\right);3-\sqrt{15}=\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)\)

mà \(\sqrt{2}< \sqrt{3}\)

Vậy \(2-\sqrt{10}< 3-\sqrt{15}\)

3 tháng 7 2017

Bài này dễ lắm

Câu 1

\(-\sqrt{5}\) lớn hơn \(-2\) . Vì 

\(-\sqrt{5}=-2,2236067977\) 

\(-2=-2\) 

Câu 2

\(\sqrt{2}+\sqrt{3}\) bé hơn \(\sqrt{10}\) . Vì

\(\sqrt{2}+\sqrt{3}=3,146264\)

\(\sqrt{10}=3,16227766\) 

Câu 3

\(8\) lớn hơn \(\sqrt{15}+\sqrt{17}\) 

\(8=8\)

\(\sqrt{15}+\sqrt{17}=7,996088972\)

14 tháng 8 2016

a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)

\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\)

=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)

b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)

\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)

=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)

c/ \(16=\sqrt{16^2}\)

\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)

=> \(16>\sqrt{15}.\sqrt{17}\)

d/\(8^2=64=32+32=32+2\sqrt{256}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)

=> \(8>\sqrt{15}+\sqrt{17}\)

 

 

 

14 tháng 8 2016

khó hiểu quá bn ơi

29 tháng 8 2017

\(\sqrt{3\sqrt{2}}=\sqrt{\sqrt{3^2\cdot2}}=\sqrt{\sqrt{18}}\)

\(\sqrt{2\sqrt{3}}=\sqrt{\sqrt{2^2\cdot3}}=\sqrt{\sqrt{12}}\)

từ trên ta suy ra

\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)