K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

 cau 1 minh ra 6

8 tháng 2 2017

Cau 1 ra d­u 6 . minh hoc rui day la bai dong du

6 tháng 5 2019

\(A=1+3+3^2+.....+3^{11}\)

\(A=\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)

\(A=\left(3^0.1+3^0.3+3^0.3^2\right)+....+\left(3^9.1+3^9.3+3^9.3^2\right)\)

\(A=1.\left(1+3+3^2\right)+....+3^9\left(1+3+3^2\right)\)

\(A=1.13+....+3^9.13\)

\(A=13.\left(1+....+3^9\right)⋮13\left(đpcm\right)\)

6 tháng 5 2019

Cảm ơn bạn nhé!

23 tháng 10 2016

a)

C=1+3+32+33+34+35+...+311

C=(1+3+32)+(33+34+35)+...+(39+310+311)

C=13+(33.1+33.3+33.32)+...+(39.1+39.3+39.32)

C=13+33.(1+3+32)+...+39.(1+3+32)

C=13.1+33.13+...+39.13

C=13.(1+33+35+37+39)\(⋮\)3

\(\Rightarrow\)C\(⋮\)3

Câu b ghép 4 số lại với nhau rồi làm như trên

28 tháng 9 2017

a)A=(2+22)+(23+24)+...(29+210)

A=2(2+1)+23(1+2)+....+29(2+1)

A=3(2+23+25+27+29)

Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)

b)A=(2+22+23+24+25)+(26+27+28+29+210)

A=2(1+2+22+23+24)+26(1+2+22+23+24)

A=31(2+26) luon chia het cho 31 :))

28 tháng 9 2017

THANKS BN

1 tháng 10 2017

830.... 3220

830=83x10

     =(83)10

     =51210

3220=322x10

       =(322)10

       =102410

 Vì 102410 >51210

       =>3220 >830

554.... 381

554=56x9

     =(56)9

     =156259

381=39x9

     =(39)9

     =196839

  Vì 196839 > 156259

         =>381 > 554

1340.... 2161

 1340=1340

2161=2160+1

       =24x40+1

       =(24)40+1

      =1640+1

      =1641

 Vì 1641 >1340

       =>2161 >1340

18 tháng 7 2018

Ta có: 8^30=(2^3)^30=2^90 (1).

Và: 32^20=(2^5)^20=2^100 (2).

Từ (1) và (2) suy ra 2^90 < 2^100

Vậy 8^30 < 32^20.

Như vậy là bài toán đã xong rồi. Xin các bạn cho mình được không ạ.

23 tháng 8 2020

a, 2^100

b, 333^444

c,2^161

d, 3^453

23 tháng 8 2020

a) Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)

                  \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

mà \(1000< 1024\)

\(\Rightarrow1000^{10}< 1024^{10}\)

\(\Rightarrow10^{30}< 2^{100}\)

b) Ta có : \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}=111^{444}.\left(3^4\right)^{111}=111^{444}.81^{111}\)

                 \(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}=111^{333}.\left(4^3\right)^{111}=111^{333}.64^{111}\)

mà \(444>333\Rightarrow111^{444}>111^{333}\)

và \(81>64\Rightarrow81^{111}>64^{111}\)

\(\Rightarrow111^{444}.81^{111}>111^{333}.64^{111}\)

\(\Rightarrow333^{444}>444^{333}\)

c) Ta có : \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)

\(\Rightarrow2^{161}>13^{40}\)

d) Ta có : \(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=\left(5^2\right)^{150}=5^{300}\)

\(\Rightarrow3^{453}>5^{300}\)