\(\sqrt{1969}+\sqrt{1971}\) 

b = 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

\(a=\sqrt{1969}+\sqrt{1971}\)

\(\Rightarrow a^2=1969+2\sqrt{1969\cdot1971}+1971\)

\(\Rightarrow a^2=2\cdot1970+2\sqrt{1969\cdot1971}\)                        (1)

\(b=2\cdot\sqrt{1970}\)

\(\Rightarrow b^2=4\cdot1970=2\cdot1970+2\cdot1970\)                   (2)

có : \(1969+1971\ge2\sqrt{1969\cdot1971}\)

\(\Rightarrow2\cdot1970\ge2\sqrt{1969\cdot1971}\)    vì 1969 khác 1971

\(\Rightarrow2\cdot1970>2\sqrt{1969\cdot1971}\)               (3)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a^2< b^2\) mà a;b không âm

\(\Rightarrow a< b\)

24 tháng 6 2018

Bình phương a và b lên để so sánh

23 tháng 4 2017

\(\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)

10 tháng 8 2017

So sánh:\(\sqrt{1969}+\sqrt{1971}\)\(2\sqrt{1970}\)

Ko bt bn giả ra chưa nhưng mk sẽ giải thử:

Áp dụng bất đẳng thức Bu-nhi- a -cốp- xki ta có:

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)thay vào đề bài đc:

\(\left(\sqrt{1969}+\sqrt{1971}\right)^2\le2\left(1969+1971\right)=\)

\(2.2.1970=4.1970\)\(=\left(2\sqrt{1970}\right)^2\) (1)

Hiển nhiên ko có dấu "=" vì \(a\ne b\) \(\left(\sqrt{1969}< \sqrt{1971}\right)\) (2)

(1); (2) \(\Rightarrow\left(2\sqrt{1970}\right)^2>\left(\sqrt{1969}+\sqrt{1971}\right)^2\)

\(\Rightarrow\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)(đpcm)

6 tháng 4 2017

kết quả là a=b nha bạn

19 tháng 1 2017

Kết quả là a = b đó

9 tháng 6 2017

2)

  • \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=2003+2005+2\sqrt{2003\times2005}\)

\(=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}=4008+2\sqrt{2004^2-1}\)

  • \(\left(\sqrt{2004}+\sqrt{2004}\right)^2=2004+2004+2\sqrt{2004\times2004}\)

\(=4008+2\sqrt{2004^2}\)

Ta có \(2004^2>2004^2-1\Rightarrow\sqrt{2004^2}>\sqrt{2004^2-1}\Rightarrow4008+2\sqrt{2004^2}>4008+2\sqrt{2004^2-1}\)

Vậy \(2\sqrt{2004}>\sqrt{2003}+\sqrt{2005}\)

26 tháng 5 2017

1.  a) 108
     b) 128
2.  >

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

AH
Akai Haruma
Giáo viên
29 tháng 2 2020

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

15 tháng 8 2018

a) \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\frac{\sqrt{2}.\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

16 tháng 8 2018

ok  mk giải dk tối qua rồi , dù s cx thanks

Bài 1: Rút gon biểu thức bằng cách đưa thưa số ra ngoài dấu căna) \(\sqrt{245.35}\)             c) \(\sqrt{63a^2}\) với a < 0              e)\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)           h) \(\sqrt{49.360}\)b) -\(\sqrt{500.162}\)      d) \(\frac{1}{3}\sqrt{225a^2}\)                      g) \(\sqrt{125a^2}\) với a < 0Bài 2: Đưa thừa số vào trong dấu căn a) 5\(\sqrt{2}\)      b) -2\(\sqrt{5}\)     ...
Đọc tiếp

Bài 1: Rút gon biểu thức bằng cách đưa thưa số ra ngoài dấu căn

a) \(\sqrt{245.35}\)             c) \(\sqrt{63a^2}\) với a < 0              e)\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)           h) \(\sqrt{49.360}\)

b) -\(\sqrt{500.162}\)      d) \(\frac{1}{3}\sqrt{225a^2}\)                      g) \(\sqrt{125a^2}\) với a < 0

Bài 2: Đưa thừa số vào trong dấu căn 

a) 5\(\sqrt{2}\)      b) -2\(\sqrt{5}\)      c) x.\(\sqrt{\frac{21}{xy}}\)với x ; y >0        d) x.\(\sqrt{\frac{-39}{x}}\)với x < 0

Bài 3: Sắp xếp theo thứ tự tăng dần 

a) \(5\sqrt{2};2\sqrt{5};2\sqrt{3};3\sqrt{2}\)                  b) \(4\sqrt{2};\sqrt{37};3\sqrt{7};2\sqrt{15}\)

 

c) \(\sqrt{27};6\sqrt{\frac{1}{3}};2\sqrt{28};5\sqrt{7}\)            c) \(3\sqrt{6};2\sqrt{7};\sqrt{39};5\sqrt{2}\)

 

Bài 4: So sánh 

a) \(\sqrt{15}-\sqrt{14}\)và \(\sqrt{14}-\sqrt{13}\)     b) \(\sqrt{105}-\sqrt{101}\) và \(\sqrt{101}-\sqrt{97}\)

Bài 5: Rút gọn

a) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)            c ) \(\sqrt{25a}+\sqrt{49a}-\sqrt{64a}\) với    \(a\ge0\)

b) \(\sqrt{3}-\frac{1}{3}\sqrt{27}+2\sqrt{507}\)        d) \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\) với \(b\ge0\)

 

 

 

 

 

 

 

 

 

0