\(x=\frac{-2009}{2010}\) và \(y=\frac{2010}{-200...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

vi \(\frac{-2009}{2010}>\frac{-2010}{1010}=1\)

\(\frac{2010}{-2009}=\frac{-2010}{2009}<\frac{-2009}{2009}=-1\)

=> x<y

violympic vòng 2 

1.\(\frac{1001}{1000}>\frac{1000}{1000}=1=\frac{1003}{1003}>\frac{1002}{1003}\Rightarrow\frac{1001}{1000}>\frac{1002}{1003}\)

2.a) \(x=\frac{a-3}{2a}\left(a\ne0\right)\)

\(=\frac{1}{2}\left(1-\frac{3}{a}\right)\inℤ\)

\(\Leftrightarrow\hept{\begin{cases}1-\frac{3}{a}\inℤ\\1-\frac{3}{a}⋮2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3}{a}\inℤ\\\frac{3}{a}\equiv1\left(mod2\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\\frac{3}{a}\equiv1\left(mod2\right)\end{cases}}\)

Ta có bảng :

\(a\)\(1\)\(-1\)\(3\)\(-3\)
\(\frac{3}{a}\)\(3\)\(-3\)\(1\)\(-1\)
\(1-\frac{3}{a}\)\(-2\)\(4\)\(0\)\(2\)
\(x\)\(-1\)\(2\)\(0\)\(1\)

Vậy \(a\in\left\{\pm1;\pm3\right\}\)

b)Ta có:\(\frac{a+2009}{a-2009}=1+\frac{4018}{a-2009}\left(a\ne2009\right)\)

\(\frac{b+2010}{b-2010}=1+\frac{4020}{b-2010}\left(b\ne2010\right)\)

\(\Rightarrow\frac{4018}{a-2009}=\frac{4020}{b-2010}\)

\(\Rightarrow\frac{a-2009}{4018}=\frac{b-2010}{4020}\)

\(\Rightarrow\frac{a-2009}{2009}=\frac{b-2010}{2010}\)

\(\Rightarrow\frac{a}{2009}-1=\frac{b}{2010}-1\)

\(\Rightarrow\frac{a}{2009}=\frac{b}{2010}\)

6 tháng 7 2021

Thanks!

5 tháng 2 2016

Đặt A = \(\frac{2009^{2009}+1}{2009^{2010}+1}\)

      B = \(\frac{2009^{2010}-2}{2009^{2011}-2}\)

Do 20092010- 2 < 20092011- 2 => \(B<1\)

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A

2 tháng 4 2016

nhân A 2009 lần và B 2009 lần mà so sánh

2 tháng 4 2016

ta có:

B=(2009^2010-2)/(2009^2011-2)<1

=>(2009^2010-2)/(2009^2011-2)<(2009^2010-2)+2011/(2009^2011-2)+2011=(2009^2010+2009)/(2009^2011+2009)

=[2009*(2009^2009+1)]/[2009*(2009^2010+1)]=(2009^2009+1)/(2009^2010+1)=A

Vậy A=B

Đúng thì !

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

4 tháng 4 2020

Câu hỏi của Lê Xuân Phú - Toán lớp 7 - Học toán với OnlineMath