Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh A và B
\(A=\frac{2018^{2017}+14}{2018^{2016}+14}\)
\(B=\frac{2018^{2016}+14}{2018^{2015}+14}\)
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
Tính A và B rồi ta đi so sánh:
A = \(\frac{2016}{2017}\) + \(\frac{2017}{2018}\) = \(1.999008674\)
B = \(\frac{2016+2017}{2017+2018}\) = \(0.9995043371\)
Mà 1.999008674 > 0.9995043371
Nên: A > B
a, Ta có :
\(A=\dfrac{15}{14}+\dfrac{16}{15}+\dfrac{17}{16}+\dfrac{18}{17}\)
\(\Leftrightarrow A=\left(1+\dfrac{1}{14}\right)+\left(1+\dfrac{1}{15}\right)+\left(1+\dfrac{1}{16}\right)+\left(1+\dfrac{1}{17}\right)\)
\(\Leftrightarrow A=\left(1+1+1+1\right)+\left(\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}\right)\)
\(\Leftrightarrow A=4+\left(\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}\right)\)
\(\Leftrightarrow A>4\)
b. \(B=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2019}\)
\(\Leftrightarrow B=\left(1-\dfrac{1}{2016}\right)+\left(1-\dfrac{1}{2017}\right)+\left(1-\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B=\left(1+1+1\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B=3-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B< 3\)
A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018
=6048/2018>1
B=2015+2016+2017/2016+2017+2018=6048/6051<1
=>A>B