Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)
\(8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)
\(\text{Vì }\frac{7}{8^{19}+1}>\frac{7}{8^{24}+1}\)
\(\Rightarrow8A>8B\)
\(\Rightarrow A>B\)
\(\text{Câu B làm tương tự nhé}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`3^12` và `5^8`
\(3^{12}=\left(3^3\right)^4=9^4\)
\(5^8=\left(5^2\right)^4=25^4\)
Vì `9 < 25` `=> 25^4 > 9^4`
`=> 3^12 > 5^8`
Vậy, `3^12 > 5^8`
`b)`
`(0,6)^9` và `(-0,9)^6`
\(\left(0,6\right)^9=\left(0,6^3\right)^3=\left(0,216\right)^3\)
\(\left(-0,9\right)^6=\left[\left(-0,9\right)^2\right]^3=\left(0,81\right)^3\)
Vì `0,81 > 0,216 => (0,81)^3 > (0,216)^3`
`=> (0,6)^9 < (-0,9)^6`
Vậy, `(0,6)^9<(-0,9)^6`
1.a) Có 312 = 33.4 = 274 ;
58 = 52.4 = 254
Dễ thấy 274 > 254 nên 312 > 58
b) Có \(0,6^9=\dfrac{6^9}{10^9}=\dfrac{6^{3.3}}{10^9}=\dfrac{216^3}{10^9}\)
mà \(\left(-0,9\right)^6=0,9^6=\dfrac{9^6}{10^6}=\dfrac{9^6.10^3}{10^9}=\dfrac{9^{2.3}.10^3}{10^9}=\dfrac{81^3.10^3}{10^9}=\dfrac{810^3}{10^9}\)
Dễ thấy \(\dfrac{216^3}{10^9}< \dfrac{810^3}{10^9}\Rightarrow0,6^9< \left(-0,9\right)^6\)
bài này phải dùng hằng đẳng thức A2-B2=(A+B)(A-B) của lớp 8 nếu bạn chưa học thì cứ nhân bung ra là nó ra cái đó
a) 1999.2001=(2000-1)(2000+1)=20002-1 < 20002(nếu bạn học lớp 7 thì tách tới đó rồi nhân bung ra thay vì dùng HĐT cũng được)
b) Ta có 3 = 22-1 Thế vào phương trình b suy ra
(22-1)(22+1)(24+1)(28+1)
= (24-1)(24+1)(28+1)
= (28-1)(28+1)=216-1<216
a) 544 giữ nguyên
2112 = ( 213 )4 = 92614
vì 54 < 9261 nên 544 < 2112
Ý a làm như bạn Huy Hoàng indonaca là đúng.
b) Ta có:
\(1+2+...+100=5050=5^2.202\)
\(5^8=5^2.15625\)
Vì \(202< 15625\) => \(1+2+...+100< 5^8\)
Ta có:
\(a=\left(-\frac{1}{4}\right)^8=\left(\frac{1}{2^2}\right)^8=\frac{1}{2^{16}}\)
\(b=\left(\frac{1}{8}\right)^5=\left(\frac{1}{2^3}\right)^5=\frac{1}{2^{15}}\)
Vì \(\frac{1}{2^{16}}< \frac{1}{2^{15}}\Rightarrow a< b\)
a>hon b