Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1\frac{4}{5}\times1\frac{4}{21}\times1\frac{4}{45}\times...\)
Ta có: \(1\frac{4}{5}=\frac{5+4}{5}=\frac{9}{5}=\frac{3\times3}{1\times5}\)
\(1\frac{4}{21}=\frac{21+4}{21}=\frac{25}{21}=\frac{5\times5}{3\times7}\)
\(1\frac{4}{45}=\frac{45+4}{45}=\frac{49}{45}=\frac{7\times7}{5\times9}\)
...
Tổng quát thừa số thứ \(n\)là: \(\frac{\left(2\times n+1\right)\times\left(2\times n+1\right)}{\left(2\times n-1\right)\times\left(2\times n+3\right)}\)
Thừa số thứ \(100\)là: \(\frac{201\times201}{199\times203}\).
Tích \(A\)là:
\(A=\frac{3\times3}{1\times5}\times\frac{5\times5}{3\times7}\times\frac{7\times7}{5\times9}\times...\times\frac{201\times201}{199\times203}\)
\(=\frac{\left(3\times5\times7\times...\times201\right)\times\left(3\times5\times7\times...\times201\right)}{\left(1\times3\times5\times...\times199\right)\times\left(5\times7\times9\times...\times203\right)}\)
\(=\frac{201\times3}{1\times203}=\frac{603}{203}\)
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
......
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}< \frac{1}{1.2}+..+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{100}< 1\).Suy ra điều phải chứng minh. câu b tương tự. bấm đúng cho mình nha
1 + 1/2 + 1/3 + ... + 1/10
= 1 và 9/10 = 19/10 = 1,9 >2
tk nha
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(=1+\frac{9}{10}\)
\(=\frac{19}{10}=1,9< 2\)
Gọi tổng trên là A
A = 1/22+1/33+.....+1/502
A = 1/2.2 + 1/3.3 +.....+ 1/50.50
A < 1/1.2 + 1/2.3 +.....+ 1/49.50
A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50
A < 1 - 1/50
A < 49/50 < 1
=> A < 1
Ai k mk mk k lại
A=(1/2)*(1/2)+(1/3)*(1/3)+...+(1/50)*(1/50) = 1/(2*2)+1/(3*3)+1/(4*4)+...+1/(50*50) < 1/(1*2)+1/(2*3)+...+1/(49*50)
Mà 1/(1*2)+1/(2*3)+...+1/(49*50) = 1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50 =1-1/50 <1
=> A<1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
a) Có vẻ đề o đúng lắm . Theo mình o phải là 11/11 mà 1/11
Ta có \(\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>...>\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
hay \(S>\frac{1}{2}\)
b)Ta có 1998 x 1999 + 3997=(2000-2) x 1999 +3997 = 2000 x 1999 - 2 x 1999 +3997 = 1999 x 2000 -3998 +3997 =1999 x 2000 -1
< 1999 x 2000 +2
=> 1999 x 2000 +2 / 1998 x 1999 +3997 > 1 hay M>1
Ta co:\(A=\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+...+\frac{1}{14.14}< \frac{2}{2.4}+\frac{2}{4.6}+\frac{1}{6.8}+...+\frac{2}{14.16}\left(1\right)\)
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{14.16}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}< \frac{8}{16}=\frac{1}{2}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A< \frac{1}{2}\)
V...