Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tc \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{a+m}< 1\left(m\in N\right)\)
Ta có: \(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}\)\(=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow B< A\)
\(A=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+15}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+1+14}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+1}{15^{16}+1}+\frac{14}{15^{16}+1}\)
\(\Rightarrow15A=1+\frac{14}{15^{16}+1}\)
\(B=\frac{15^{16}+1}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+15}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+1+14}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+1}{15^{17}+1}+\frac{14}{15^{17}+1}\)
\(\Rightarrow15B=1+\frac{14}{15^{17}+1}\)
Vì \(\frac{14}{15^{17}+1}< \frac{14}{15^{16}+1}\) nên \(15B< 15A\)
Vậy B < A
Ta có công thức \(\frac{a}{b}<1\)thì\(\frac{a}{b}<\frac{a+n}{b+n}\)
\(B=\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\left(1\right)\)
từ (1) \(\Leftrightarrow A>B\)
a, Vì A, B < 1
\(A=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
b, \(B=\frac{2018^{2018}+1}{2018^{2019}+1}< 1< \frac{2018^{2019}+1}{2018^{2018}+1}=A\)
Ta có:
\(125^{36}=\left(5^3\right)^{36}=5^{108}=5^{60}.5^{48}=5^{60}.\left(5^2\right)^{24}\)
\(=5^{60}.25^{24}\)
\(16^{24}.625^{15}=16^{24}.\left(5^4\right)^{15}=16^{24}.5^{60}\)
Vì \(25>16\) nên \(25^{24}>16^{24}\)=> \(5^{60}.25^{24}>5^{60}.16^{24}\)
Vậy \(125^{36}>16^{24}.625^{15}\)
T**k mik nhé!
315= 35.3= ( 3 3) 5 = 275
1620= 16 5.4 =(164)5 = 655365
Vì 655365 > 275 nên 315 < 1620
phân số đầu gọi là A
phân số thứ 2 là B
ta có: \(13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{13}{13^6+1}\)
\(13B=\frac{3^{17}+13}{13^{17}+1}=1+\frac{13}{13^7+1}\)
vì \(13^{16}+1< 13^{17}+1\)nên 13A>13B => A>B
giải thích thêm nhé
phân số nào có mẫu lớn hơn tử thì phân số đó bé hơn
trong trường hợp trên khi đã rút gọn nó ra rồi thì chỉ cần so sánh mẫu thôi vì tử đều là 13
Vì \(\frac{13^{16}+1}{13^{17}+1}< 1\)
\(\Rightarrow\frac{13^{16}+1}{13^{17}+1}< \frac{13^{16}+1+12}{13^{17}+1+12}=\frac{13^{16}+13}{13^{17}+13}=\frac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\frac{13^{15}+1}{13^{16}+1}\)
Vậy \(\frac{13^{15}+1}{13^{16}+1}>\frac{13^{16}+1}{13^{17}+1}\)
A=10^15+1/10^16+1
=>10A=1+9/10^16+1
B=10^16+1/10^17+1
=>10B=1+9/10^17+1
=>10A>10B=>A>B
Vậy:A>B
15mu16>16mu15 kkk to nh a