![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)
\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)
\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Bài làm
Ta có:
\(\frac{1}{11}>\frac{1}{20}\), \(\frac{1}{12}>\frac{1}{20}\), \(\frac{1}{13}>\frac{1}{20}\), \(\frac{1}{14}>\frac{1}{20}\), \(\frac{1}{15}>\frac{1}{20}\), \(\frac{1}{16}>\frac{1}{20}\), \(\frac{1}{17}>\frac{1}{20}\), \(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)
=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)
hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)
=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Do đó: \(S=\frac{1}{2}\)
# Chúc bạn học tốt #
![](https://rs.olm.vn/images/avt/0.png?1311)
3 mũ 39 = ( 3 mũ 13 ) mũ 3 = 1594323 mũ 3
11 mũ 21 = ( 11 mũ 7 ) mũ 3 = 19487171 mũ 3
Ta thấy 1594323 < 19487171 nên => 3 mũ 39 < 11 mũ 21
Mình ko biết đúng hay ko nhưng bn k cho mình nha ! Cực lắm đó ! ~_~
Mình làm giống bạn nhưng không biết có cách nào hay hơn .
![](https://rs.olm.vn/images/avt/0.png?1311)
so ez
ko ghi đề
rút gọn 16 và 32
\(=\frac{11}{2}và\frac{1}{49}\)
11 phần 2 tử lớn hơn mẫu => số lớn hơn 0
1 phần 49 tử bé hơn mẫu=> số bé hơn 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta chứng minh bài toán phụ:
Với a<b thì\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(c\inℕ^∗\right)\)
Ta có: \(a< b\)
\(\Rightarrow ac< bc\)
\(\Rightarrow ac+ba< bc+ba\)
\(a\left(b+c\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
đpcm
Áp dụng vào bài toán ta có:
\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)
Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)
Tham khảo nhé~
Đặt \(A=\frac{10^{19}+1}{10^{20}+1}\)
\(\Rightarrow10A=\frac{10^{20}+10}{10^{20}+1}=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
\(B=\frac{10^{20}+1}{10^{21}+1}\)
\(\Rightarrow10B=\frac{10^{21}+10}{10^{21}+1}=\frac{10^{21}+1+9}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
\(\Rightarrow\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\)
\(\Rightarrow1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\)
\(\Rightarrow10A>10B\Rightarrow A>B\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
13/36 + 17/45 + -23/20
= 133/180 + -23/20
= -37/90
b)
18/35 + -11/21 + -23/20
= -1/105 + -23/20
= -487/420
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(21^{15}=\left(7.3\right)^{15}=7^{15}.3^{15}\)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\)
Vì: \(3^{15}=3^{15}\) và \(7^{16}>7^{15}\) nên:
\(7^{15}.3^{15}< 3^{15}.7^{16}\)
Hay:\(21^{15}< 27^5.49^8\)
Vậy ...
Ta có :
\(21^{15}=7^{15}.3^{15}\)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\)
Vì \(7^{15}< 7^{16}\)
\(21^{15}< 27^5.49^8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Đáng lẽ đề là \(5^{14}\) và \(26^8\) (Nếu đề như trên thì đơn giản nên mình sửa đề lại)
Ta có \(26^8>25^8=\left(5^2\right)^8=5^{16}\)
Mà \(5^{16}>5^{14}\Rightarrow25^8>5^{14}\Rightarrow26^8>5^{14}\)
b)\(31^{11}và17^{14}\)
Ta có \(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\) (1)
và\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\) (2)
Từ 1 vs 2 \(\Rightarrow31^{11}< 2^{55}< 2^{56}< 17^{14}\Rightarrow31^{11}< 17^{14}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
3111 < 3211 = ( 25 )11 = 255
1714 > 1614 = ( 24 )14 = 256
vì 3111 < 255 < 256 < 1714 nên 3111 < 1714
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
3111<3211=(25)11=255
1714>1614=(24)14=256
3111<255<256<1714
\(\Rightarrow\)3111<1714
\(\text{Ta có:}\)
\(11^{21}=11^{3.7}=\left(11^3\right)^7=1331^7.\)
\(17^{14}=\left(17^2\right)^7=289^7\)
\(\text{Vì }\)\(1331^7>289^7\Rightarrow11^{21}>17^{14}\)