Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)
\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
Thế lại bài toán ta được:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)
\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)
b/ Ta có:
A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)
\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)
Vậy A < B
1/
\(10A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 1< 10B$
$\Rightarrow A< B$
2/
\(C=\frac{10^{99}+5}{10^{99}-8}=1+\frac{13}{10^{99}-8}\)
\(D=\frac{10^{100}+6}{10^{100}-4}=1+\frac{10}{10^{100}-4}\)
So sánh \(\frac{13}{10^{99}-8}=\frac{130}{10^{100}-80}> \frac{130}{10^{100}-4}> \frac{10}{100^{100}-4}\)
$\Rightarrow 1+\frac{13}{10^{99}-8}> 1+\frac{10}{100^{10}-4}$
$\Rightarrow C> D$
210 và 310
Ta có:
210 = 1024
210 = 59049
Vì 1024 < 59049 => 210 < 310
Vậy 210 < 310
3100 và 2300
Ta có:
3100 = 3100
2200 = (22)100 = 4100
Vì 3100 < 4100 => 3100 < 2200
Vậy 3100 < 2200
255 và 510
Ta có:
255 = 9765625
Vì 9765625 > 510 => 255 > 510
Vậy 255 > 510
Học tốt!!!
Ta có 99 mu 101 = 11 mu 9 tat ca mu 101=11 mu 909
Ta có 11 mu 100 . 11 mu 909 = 11 mu 1009.
Ta có :11 mu 1009 lớn 10 mu 203 (vì cả cơ so và mũ số cua no deu lon hon co so va mu so cua luy thua kia
P=1/10+1/11+...+1/100=1/10+(1/11+1/12+...+1/50)+(1/51+1/52+...+1/100)
Đặt A = 1/11+1/12+1/13+...+1/50
A có (50-11):1+1=40(số hạng)
Lại có: 1/11>1/12>...>1/50
=>1/11+1/12+1/13+...+1/50>1/50+1/50+...+1/50(40 số hạng)
=>A>4/5
Đặt B =1/51+1/52+...+1/100
B có (100-51):1+1=50 (số hạng)
Lại có : 1/51>1/52>...>1/100
=>1/51+1/52+1/53+...+1/100>1/100+1/100+...+1/100(50 số hạng)
=>B>1/2
=>P>1/10+4/5+1/2
=>P>14/10
=>P>1
Vậy P>1
(100^99+99^100)^100
(100^100+99^100)^99
ta có : (100^99+99^100)^100=100^9900+99^10000
(100^100+99^100)^99=100^9900+99^9900
=)100^9900=100^9900; 99^10000>99^9900(vì 10000>9900)
=)(100^99+99^100)^100>(100^100+99^100)^99
99^100 lớn hơn
10200 = (112)100 = 121100
Vì 121 > 99 nên 121100 > 99100
=> 10200 > 99100