K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

a) Ta có (3 - 2i)z + (4 + 5i) = 7 + 3i <=> (3 - 2i)z = 7 + 3i - 4 - 5i

<=> z = <=> z = 1. Vậy z = 1.

b) Ta có (1 + 3i)z - (2 + 5i) = (2 + i)z <=> (1 + 3i)z -(2 + i)z = (2 + 5i)

<=> (1 + 3i - 2 - i)z = 2 + 5i <=> (-1 + 2i)z = 2 + 5i

z =

Vậy z =

c) Ta có + (2 - 3i) = 5 - 2i <=> = 5 - 2i - 2 + 3i

<=> z = (3 + i)(4 - 3i) <=> z = 12 + 3 + (-9 + 4)i <=> z = 15 -5i



1 tháng 4 2017

a) (3 + 2i)z – (4 + 7i) = 2 – 5i

⇔(3+2i)z=6+2i

<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i

b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z

⇔(7−3i−5+4i)=−2−3i

⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)

c) z2 – 2z + 13 = 0

⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i

d) z4 – z2 – 6 = 0

⇔ (z2 – 3)(z2 + 2) = 0

⇔ z ∈ { √3, - √3, √2i, - √2i}







AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Lời giải:

Đặt \(z=a+bi\)

Ta có: \(|z|-2\overline{z}=-7+3i+z\)

\(\Leftrightarrow \sqrt{a^2+b^2}-2(a-bi)=-7+3i+a+bi\)

\(\Leftrightarrow (\sqrt{a^2+b^2}-2a)+2bi=(-7+a)+i(b+3)\)

\(\Rightarrow \left\{\begin{matrix} \sqrt{a^2+b^2}-2a=-7+a(1)\\ 2b=b+3(2)\end{matrix}\right.\)

Từ (2) suy ra \(b=3\)

Thay vào (1): \(\sqrt{a^2+9}=3a-7\)

\(\Rightarrow (3a-7)^2=a^2+9\)

\(\Leftrightarrow 9a^2+49-42a=a^2+9\)

\(\Leftrightarrow 8a^2-42a+40=0\)

\(\Leftrightarrow a=4\) (chọn) hoặc \(a=\frac{5}{4}\) (loại do \(a\in\mathbb{Z}\) )

Vậy số phức \(z=4+3i\)

\(\Rightarrow w=1-(4+3i)+(4+3i)^2=4+21i\)

\(\Rightarrow |w|=\sqrt{4^2+21^2}=\sqrt{457}\)

18 tháng 7 2018

đặc \(z=a+bi\) với \(a;b\in R;i^2=-1\)

ta có : \(\left|z-4-3i\right|=\sqrt{5}\Leftrightarrow\left(a-4\right)^2+\left(b-3\right)^2=5\)

\(\Leftrightarrow a^2+b^2=8x+6x-20\)

đặc \(A=\left|z+1-3i\right|+\left|z-1+i\right|=\sqrt{\left(a+1\right)^2+\left(b-3\right)^2}+\sqrt{\left(a-1\right)^2+\left(b+1\right)^2}\)

áp dụng bunhiacopxki ta có :

\(A\le\sqrt{2\left[\left(a+1\right)^2+\left(b-3\right)^2+\left(a-1\right)^2+\left(b+1\right)^2\right]}\)

\(\Leftrightarrow A\le\sqrt{2\left(2a^2+2b^2-4b+12\right)}=\sqrt{2\left(16a+12b-40-4b+12\right)}\)

\(\Leftrightarrow A\le\sqrt{2\left[16\left(a-4\right)+8\left(b-3\right)\right]+120}\)

áp dụng bunhiacopxki lần nữa ta có :

\(A\le\sqrt{2\left(16^2+8^2\right)\left[\left(a-4\right)^2+\left(b-3\right)^2\right]+120}\)

\(\Leftrightarrow A\le2\sqrt{830}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-3\right)^2=\left(a-1\right)^2+\left(b+1\right)^2\\\dfrac{a-4}{16}=\dfrac{b-3}{8}\\\left(a-4\right)^2+\left(b-3\right)^2=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\\\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\end{matrix}\right.\)

khi \(\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\Rightarrow P=a+b=10\)

khi \(\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\Rightarrow P=a+b=4\)

vậy \(P=10;P=4\)

21 tháng 10 2019

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn D

27 tháng 3 2017

17 tháng 11 2017

Chọn A

Ta có: (2 + 3i)z = 1 - 5i. Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

19 tháng 7 2018

Đáp án D

Cách giải: gọi z=x+yi

Vậy quỹ tích các điểm z thuộc đường tròn tâm I(4;-3); R=3

Đặt

 

(theo bunhiacopxki)

25 tháng 10 2017

Ta có: |   1   +   3 i |   =   ( 1   +   3 )   =   2 . Đặt z = a + bi(a, b ∈R). Ta có:

| z   +   i |   =   | 1   +   3 i |   <=> |a + (1 - b)i| = 2 <=>  a 2 + ( 1 - b ) 2 = 4

Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(0 ;1), bán kính R = 2

Chọn C

2 tháng 6 2016

 gọi z= a + bi  \(\left(a,b\in R\right)\)

(2+i)(a+bi)=4-3i

\(\Leftrightarrow\) \(2a-b+\left(a+2b\right)i=4-3i\)

\(\Leftrightarrow\begin{cases}2a-b=4\\a+2b=-3\end{cases}\)

\(\Leftrightarrow\begin{cases}a=1\\b=-2\end{cases}\)

\(z=1-2i\)

w= i(1-2i) + 2( 1+ 2i) = 4 + 5i

2 tháng 6 2016

Mình tưởng tìm moodun của một số \(\sqrt{a^2+b^2}\) chứ. @Nhók Lì Lợm