Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1
\(1=1\cdot1=-1\cdot\left(-1\right)\)
\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)
Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)
=> Ta thấy A=1 hoặc A=-1 là không thể
=> A=-3 hoặc A=3
Đặt phép tính cho từng trường hợp ta được
\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)
Vì tận cùng là 1 (1=1.1 hoặc -1.-1)
=> 3x4+3x3-7x2-2x+1 = (ax +1)(bx3+cx2+dx+1) (1=-1.-1 thì đặt dấu trừ ra ngoài sẽ mất dấu)
Vì 3=1.3 hoặc -1.-3
=> ta thấy a=1 hoặc -1 là không thế (nhìn vào là biết thôi)
=> a=-3 hoặc 3
Đặt phép tính chia cho từng trường hợp ta được 3x4+11x3-7x2-2x+1= (-3x+1)(-x3-4x2+x+1)
Đây là cách suy luận của mình khi làm bài trên còn ghi vào giấy thì đừng làm vậy nhé
Chỉ cần ghi : 3x4+11x3-7x2-2x+1 = 3x4 -x3 +12x3 .... v.v => đặt nhân tử chung
\(\left(2x^2-y\right)^3\)
\(=8x^6-12x^4y+6x^2y^2-y^3\)
Tổng các hệ số là :
\(8+\left(-12\right)+6+\left(-1\right)\)
\(=-4+6-1\)
\(=2-1=1\)
500,505 đúng không ?
500,505