K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

=> 3^3n+1 = 3^2n+4

=> 3n+1 = 2n + 4

=>n + 1= 4

=>n=3

26 tháng 6 2017

33n+1=9n+2 =>33n+1=32(n+2) <=>3n+1=2n+4 <=> n=3 

4 tháng 1 2016

33n+1 = 9n+2

33n+1 = 32(n+2)

33n+1 = 32n+4

3n + 1 = 2n + 4

2n - 3n = 1 - 4

-n = -3

n = 3 

4 tháng 1 2016

\(3^{3n+1}=9^{n+2}=\left(3^2\right)^{2n+2}=2^{4n+4}=>3n+1=4n+4=>n=-3\)

3 tháng 1 2017

 \(3^{3n+1}=9^{n+2}\Rightarrow3^{3n+1}=\left(3^2\right)^{n+2}\)

\(\Rightarrow3^{3n+1}=3^{2\left(n+2\right)}\Rightarrow3n+1=2\left(n+2\right)\)

\(\Rightarrow3n+1=2n+4\Rightarrow3n-2n=4-1\)

\(\Rightarrow n=3\)

7 tháng 10 2017

???????????????????

23 tháng 10 2017

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

10 tháng 8 2017

giả thiết m và n nguyên tố cùng nhau

nên ƯCLN(m;n)=1

Mà m^2chia hết cho n

Và n^2 chia hết cho m 

m,n nguyên dương lẻ

nên m=n=1

Do đó m^2+n^2+2=4

4.m.n=4

Vậy ta được đpcm

7 tháng 10 2017

má mới học lớp 4 sao má bít được

27 tháng 9 2018

a) n=1

b)n=1

c)n=5

d)n=6

3 tháng 8 2016

áp dụng ao =1 mà làm

27 tháng 9 2023

mk vẫn ko hiểu

Ta thấy :

36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7

<=> 36n+1 - k . 33n + 9 ⋮ 7

Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )

Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )

Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )