\(\sqrt{2x+1}+x^2-3x+1=0\)là?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

5 tháng 8 2016

Điều kiện  \(x\ge\frac{-1}{2}\)

Ta có : \(\sqrt{2x+1}+x^2-3x+1=0\)

\(\Leftrightarrow2\sqrt{2x+1}+2x^2-6x+2=0\)

\(\Leftrightarrow-\left(2x+1\right)+2\sqrt{2x+1}-1+2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)^2-\left(\sqrt{2x+1}-1\right)^2=0\)

\(\Leftrightarrow\left[\sqrt{2}\left(x-1\right)-\sqrt{2x+1}+1\right].\left[\sqrt{2}\left(x-1\right)+\sqrt{2x+1}-1\right]=0\)

Tới đây bạn tự làm nhé!

5 tháng 12 2016

-0.5851

2 tháng 12 2016

ko bít!

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k

7 tháng 8 2016

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\sqrt{2x+1}+x^2-3x+1=0\)

\(\Rightarrow\sqrt{2x+1}=-x^2+3x-1\)

\(\Rightarrow2x+1=x^4-6x^3+11x^2-6x+1\)

\(\Rightarrow x^4-6x^3+11x^2-8x=0\)

\(\Rightarrow x\left(x^3-6x^2+11x-8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^3-6x^2+11x-8=0\left(1\right)\end{cases}}\)

(1) => bấm máy ta nhận đc 1 nghiệm như mà lẻ quá

                                       Vậy có 2 nghiệm

7 tháng 8 2016

\(\sqrt{2x+1}=t\ge0\)\(\Rightarrow x=\frac{t^2-1}{2}\)

thay vài phương trình đã cho và phân tích nhân tử, ta được:

\(pt\rightarrow\left(t+1\right)\left(t^3-t^2-7t+11\right)=0\)

\(\Leftrightarrow t^3-t^2-7t+11=0\text{ (1)}\)\(do\text{ }t+1>0\)

Bấm máy tính thấy phương trình này chỉ có 1 nghiệm âm, do đó ta chứng minh phương trình này ko có nghiệm dương

\(\left(1\right)\Leftrightarrow t\left(t^2-4t+4\right)+3t^2-11t+11=0\)

\(\Leftrightarrow t\left(t-2\right)^2+3\left(t-\frac{11}{6}\right)^2+\frac{11}{12}=0\)

Thấy ngay phương trình này có VT > 0 nên vô nghiệm.

Vậy phương trình đã cho VÔ NGHIỆM.

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra