Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1981^2-1980^2}{1981^2+1980^2}\)
\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+1980^2}\)
\(>\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+2.1981.1980+1980^2}\)
\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{\left(1981+1980\right)^2}=\frac{1981-1980}{\left(1981+1980\right)}\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
Bạn chỉ cần để ý điều này thôi: \(\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=x^2-2+\frac{1}{x^2}\)
Do đó giả thiết viết lại thành:
\(\left(a^2-2+\frac{1}{a^2}\right)+\left(b^2-2+\frac{1}{b^2}\right)+\left(c^2-2+\frac{1}{c^2}\right)=0\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(b-\frac{1}{b}\right)^2+\left(c-\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-\frac{1}{a}=0\\b-\frac{1}{b}=0\\c-\frac{1}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{a}\\b=\frac{1}{b}\\c=\frac{1}{c}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=1\\b^2=1\\c^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2\right)^{1010}=1^{1010}\\\left(b^2\right)^{1010}=1^{1010}\\\left(c^2\right)^{1010}=1^{1010}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^{2020}=1\\b^{2020}=1\\c^{2010}=1\end{matrix}\right.\) \(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}=3\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
\(\frac{\left(x^2+2\right)^2-4x^2}{y\left(x^2+2\right)-2xy-\left(x-1\right)^2-1}=\frac{x^2+2x+2}{y-1}\)
chứng minh sao cho 2 phân thức đó bằng nhau
GIÚP VỚI !!!!!!!!!!
+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)