Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
\(\frac{8n+193}{4n+3}=\frac{2.4n+2.3+187}{4n+3}\)
\(=\frac{2.\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Để M có giá trị là số tự nhiên thì \(4n+3\)phải là ước tự nhiên của \(187=\left\{1;11;17;187\right\}\)
\(\left(+\right)4n+3=1\Rightarrow4n=1-3=-2\Leftrightarrow n=-\frac{1}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=11\Rightarrow4n=11-3=8\Leftrightarrow n=2\)( thỏa mãn )
\(\left(+\right)4n+3=17\Rightarrow4n=14\Leftrightarrow n=\frac{7}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=187\Rightarrow4n=187-3=184\Leftrightarrow n=46\)( thỏa mãn )
Vậy \(n\in\left\{2;46\right\}.\)
b. Gọi ước chung của 8n + 193 và 4n + 3 là d
Ta có:
\(\hept{\begin{cases}8n+193⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}8n+193⋮d\\2\left(4n+3\right)⋮d\end{cases}}\)
\(\Rightarrow8n+193-2\left(4n+3\right)⋮d\)
\(\Leftrightarrow187⋮d\)
\(\Rightarrow d\inƯ\left(187\right)=\left\{1;11;17;187\right\}\)
Thử:
\(n=156\Rightarrow M=\frac{77}{19}\)
\(n=165\Rightarrow M=\frac{89}{39}\)
\(n=167\Rightarrow M=\frac{139}{61}.\)
\(M=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\inℕ^∗\Rightarrow\frac{187}{4n+3}\inℕ^∗\)
Vì \(n\inℕ^∗\Rightarrow4n+3\inℕ^∗\Rightarrow4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{\pm1;\pm11;\pm17;\pm187\right\}\)
\(\Rightarrow n\in\left\{-1;2;-5;46\right\}\)
b. M rút gọn được <=> \(\frac{187}{4n+3}\)rút gọn được => 4n+3 chia hết cho 11, 17 hoặc 187
Mà \(150\le n\le170\Rightarrow603\le4n+3\le683\)
Ta có: trong khoảng từ 603 -> 683 chỉ có:
+ 605, 616, ..., 682 chia hết cho 11 => 4n+3 \(\in\){605, 616, ..., 682} => Tìm n
+ 612, 629, ..., 680 chia hết cho 17 => \(4n+3\in\left\{612,629,...,680\right\}\)=> tìm n
+ không có số nào chia hết cho 187
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
Gọi tổng các chữ số của a và 5a là m
=> ta đã biết rằng : 1 số bất kì luôn viết = ( 1 số chia hết cho 9 ) + ( tổng các chữ số của nó )
Nên:
a = 9q +m
5a=9p +m
=>5a - a = 9(q-p)
=>4a chia hết cho 9 ; 4 không chia hết cho 9
=> a chí hết cho 9
Gọi 5 số tự nhiên là a1 a2 a3 a4 a5 UCLN ( a1 a2 a3 a4 a5) = d Ta có
a1 = dk1 a2 = dk2 a3 = dk3 a4 =dk4 a5 = dk5
Nen (a1+a2+a3+a4+a5) = d(k1+ k2 + k3+ k4 + k5)
do đó 156= d(k1+k2+k3+k4+k5)
Vì d ước của 156
k1+k2+k3+k4+k5 nen 5d 156 d 31
Ta có
156 = 22 . 3.13
Ước lớn nhất của 156 không quá 31 là 26
Vậy UCLN của các số đó là 26
* * *
câu a hình như thiếu đề
b) ab+ba
= 10a+b+10b+a
= 11a + 11b (Phần sau tự c/m vì nó dễ)
c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận
* * *
a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
= a+a+1+a+2+a+3+a+4
= 5a +( 1+2+3+4)
= 5a + 10 (Phần sau tự c/m)
b)tương tự câu a, nhưng kết quả cuối = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)
Hok tốt!!!! ^_^
B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y
⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)
⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15
⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1
⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28
Giải :
m = 4 . 5 . 6 . ... . 26
m = 22 . 5 . 2 . 3 . 7 . ... . 2 . 13
m = 222 . 39 . 56 . 73 . 112 . 132 . 171 . 191
m = 216 . 36 . 33 . 73 . 112 . 132 . 171 . 191 . 26 . 56
m = 216 . 36 . (33 . 73) . (112 . 132) . (171 . 191) . ( 26 . 56 )
m = 216 . 36 . 213 . 1432 . 3231 . 106
Vì 10a = 100...000 ( a số 0 )
Mà đây trong tích m có 106
=> m có tận cùng 6 chữ số 0.