![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{3^6\cdot3^8\cdot5^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+3^{12}\cdot5^6}=\dfrac{3^{14}\cdot5^4-3^{13}\cdot5^4}{3^{12}\cdot5^6\cdot2}\)
\(=\dfrac{3^{13}\cdot5^4\cdot2}{3^{12}\cdot5^6\cdot2}=\dfrac{3}{25}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(x\right)=2016x^4-32\left(25k+2\right)x^2+k^2-100\)
Đặt \(x^2=t\left(t\ge0\right)\)
\(f\left(t\right)=2016t^2-32\left(25.k+2\right)t+k^2-100\)
Vì f(t) là đa thức bậc 2 nên chỉ có tối đa là 2 nghiệm \(t_1;t_2\)
Ta có nhận xét: \(x^2=t\left(t\ge0\right)\)nên với mỗi t >0 sẽ nhận được 2 nghiệm x và t=0 nhận được nghiệm x=0
Như vậy thì để đa thức f(x) có 3 nghiệm phân biệt thì đa thức f(t) phải có một ngiệm bằng 0 và một nghiệm t lớn hơn không
Khi đó: a=\(-\sqrt{t}\),b=0, c=\(\sqrt{t}\)
0 là một nghiệm của đa thức f(t) <=> f(0)=0 <=> \(k^2-100=0\Leftrightarrow k=\pm10\)
+) Với k=10; f(t)= 2016t^2-8064t=2016.t.(t-4)
f(t) có nghiệm t=0 và t=4
=> f(x) có 3 nghiệm a=-2, b=0, c=2
=> a-c=-2-2=-4
+) Với k=-10; f(t)=2016.t^2+7936t=t(2016t+7836)
f(t) có nghiệm t=0 và t=-7836/2016 (loại vì t>0)
số liền trước của 4.b là :
liền trước giảm 1 đơn vị
vậy số liền trước của 4.b là 4b-1
đáp số.................
công chúa sofia không biết đừng có spam
Sorry mink mới học có lớp 5 thôi nên MINK ko thể giúp bn.