K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

số liền trước của 4.b là :

liền trước giảm  1 đơn vị

vậy số liền trước  của 4.b là 4b-1

đáp số.................

công chúa sofia không biết đừng có spam

29 tháng 6 2017

Sorry mink mới học có lớp 5 thôi nên MINK ko thể giúp bn.

26 tháng 8 2019

Bài 1:

a ) Ta có :  A là tổng các số hạng chia hết cho 3 => A \(⋮\)3                            

                  A có 3 không chia hết cho 9 => A không chia hết cho 9

=>  A \(⋮\)3 nhưng không chia hết cho 9

=> A không phải là số chính phương

Bài 2:

Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)

Có : A = (2k+1)^2+(2q+1)^2

           = 4k^2+4k+1+4q^2+4q+1

           = 4.(k^2+k+q^2+q)+2

Ta thấy A chia hết cho 2 nguyên tố

Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4

=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2

=> A ko là số  chính phương

=> ĐPCM

Bài 1: (1,5 điểm) Tìm xa) 5x = 125;                b) 32x = 81;c) 52x-3 – 2.52 = 52.3;Bài 2: (1,5 điểm)Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5Bài 3: (1,5 điểm)Cho a là một số nguyên. Chứng minh rằng:a. Nếu a dương thì số liền sau a cũng dương.b. Nếu a âm thì số liền trước a cũng âm.c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?Bài...
Đọc tiếp

Bài 1: (1,5 điểm) Tìm x

a) 5x = 125;                b) 32x = 81;

c) 52x-3 – 2.52 = 52.3;

Bài 2: (1,5 điểm)

Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5

Bài 3: (1,5 điểm)

Cho a là một số nguyên. Chứng minh rằng:

a. Nếu a dương thì số liền sau a cũng dương.

b. Nếu a âm thì số liền trước a cũng âm.

c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?

Bài 4: (2 điểm)

Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.

Bài 5: (2 điểm)

      Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.

Bài 6: (1,5 điểm)

     Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:

a. Góc xOy = xOz = yOz

b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.

0
23 tháng 8 2016

giúp mình đi rùi mình giúp bạn

23 tháng 8 2016

a)a>5

b)a<5

c)4>a>2

26 tháng 10 2016

ta có hình vẽ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

\(=\dfrac{3^6\cdot3^8\cdot5^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+3^{12}\cdot5^6}=\dfrac{3^{14}\cdot5^4-3^{13}\cdot5^4}{3^{12}\cdot5^6\cdot2}\)

\(=\dfrac{3^{13}\cdot5^4\cdot2}{3^{12}\cdot5^6\cdot2}=\dfrac{3}{25}\)

10 tháng 1 2019

hok đến kì 2 rùi ah

nhanh thế

11 tháng 1 2019

\(f\left(x\right)=2016x^4-32\left(25k+2\right)x^2+k^2-100\)

Đặt \(x^2=t\left(t\ge0\right)\)

\(f\left(t\right)=2016t^2-32\left(25.k+2\right)t+k^2-100\)

Vì f(t) là đa thức bậc 2 nên chỉ có tối đa là 2 nghiệm \(t_1;t_2\)

Ta có nhận xét: \(x^2=t\left(t\ge0\right)\)nên với mỗi t >0 sẽ nhận được 2 nghiệm x và t=0 nhận được nghiệm x=0

Như vậy thì để đa thức f(x) có 3 nghiệm phân biệt thì đa thức f(t) phải có một ngiệm bằng 0 và một nghiệm t lớn hơn không

Khi đó: a=\(-\sqrt{t}\),b=0, c=\(\sqrt{t}\)

0 là một nghiệm của đa thức f(t) <=> f(0)=0 <=> \(k^2-100=0\Leftrightarrow k=\pm10\)

+) Với k=10; f(t)= 2016t^2-8064t=2016.t.(t-4)

f(t) có nghiệm t=0 và t=4

=> f(x) có 3 nghiệm a=-2, b=0, c=2

=> a-c=-2-2=-4

+) Với k=-10; f(t)=2016.t^2+7936t=t(2016t+7836)

f(t) có nghiệm t=0 và t=-7836/2016 (loại vì t>0)