Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{-x^2+2x-1}\) có nghĩa khi
\(-x^2+2x-1\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\ge0\) ( luôn đúng)
=> với mọi x biểu thức luôn có nghĩa
b) \(\frac{\sqrt{x+1}}{x}\) có nghĩa khi:
\(\hept{\begin{cases}x+1\ge0\\x\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ne0\end{cases}}\)
c) \(\sqrt{-x^2-2}\)có nghĩa khi
\(-x^2-2\ge0\Leftrightarrow-\left(x^2-2\right)\ge0\Leftrightarrow x^2-2\le0\Leftrightarrow x^2\le2\Leftrightarrow-2\le x\le2\)
d) \(\sqrt{2x^2-1}\)có nghĩa khi
\(2x^2-1\ge0\Leftrightarrow2x^2\ge1\Leftrightarrow x^2\ge\frac{1}{2}\Leftrightarrow-\frac{1}{2}\ge x\ge\frac{1}{2}\)
1. Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến
=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.
4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).
Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)
Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3
Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.
Vậy DE là tiếp tuyến của đường tròn (O) tại E.
5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm
3xbình =(x+2) bình => 3x bình = x bìn+ 4 x +4 => 2x bình - 4x -4 =0 => 2. (x bình - 2x -1)=0
\(\left(\sqrt{5}+\sqrt{3}+\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\)
\(=7+2\sqrt{10}-3\)
\(=4+2\sqrt{10}\)
- √12-√27+√3
- (√12-2√75).√3
- √252-√700+√7008-√448
- √3.(√12+√27-√3)
- (√2.3√3-5√6):√54
\(\sqrt{x^2+x+1}=x+1\)
\(\Leftrightarrow\left(\sqrt{x^2+x+1}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+x+1=x^2+2x+1\)
\(\Leftrightarrow x=2x\)
\(\Leftrightarrow2x-x=0\)
\(\Leftrightarrow x=0\)
1. \(\sqrt{x^2+5x+20}=4\)
\(\Leftrightarrow\left(\sqrt{x^2+5x+20}\right)^2=4^2\)
\(\Leftrightarrow x^2+5x+20=16\)
\(\Leftrightarrow x^2+5x+20-16=0\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow x^2+4x+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-1\end{cases}}}\)
Tớ k cho
1 và 3
nói đại thui ko bít đâu nhé