\(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\) là.....

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

\(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)

\(\Rightarrow\left(3x-1\right)^{20}-\left(3x-1\right)^{10}=0\)

\(\Rightarrow\left(3x-1\right)^{10}\left[\left(3x-1\right)^{10}-1\right]=0\)

\(\Rightarrow\left[\begin{matrix}\left(3x-1\right)^{10}=0\\\left(3x-1\right)^{10}-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}3x-1=0\\3x-1=\pm1\end{matrix}\right.\)

+) \(3x-1=0\Rightarrow x=\frac{1}{3}\)

+) \(\left[\begin{matrix}3x-1=1\\3x-1=-1\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{2}{3}\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{3};\frac{2}{3};0\right\}\)

27 tháng 2 2017

(3x−1)10=(3x−1)20

=>(3x−1)10=(3x−1)10.(3x−1)10

(3x−1)10:(3x−1)10=(3x−1)10

vậy (3x−1)10=\(1^{10}\)

ta có (3x−1)10=1 hoặc (3x−1)10=-1

=>TH1 3x-1=1 TH2 :3x-1=-1

3x=1+1 3x=-1+1

3x=2 3x=0

x=\(\frac{2}{3}\) x=0

vậy x=\(\frac{2}{3}\) hoặc x=0

20 tháng 11 2018

Ta có: \(f\left(671.3+1\right)=\left(671-670\right)\left(671-672\right)\Rightarrow f\left(2014\right)=1.\left(-1\right)=-1\)

20 tháng 11 2018

Ta có: \(3x+1=2014\)

\(\Rightarrow3x=2013\)\(\Rightarrow x=671\)

Thay \(x=671\)vào hàm số trên ta được: 

\(\left(671-670\right).\left(671-672\right)=1.\left(-1\right)=-1\)

Vậy \(f\left(2014\right)=-1\)

20 tháng 11 2018

Ta có: \(f\left(4^3+1\right)=4^2-4.3\Rightarrow f\left(65\right)=4\)

20 tháng 11 2018

Ta có: \(x^3+1=65\)

\(\Rightarrow x^3=64\)\(\Rightarrow x=4\)

Thay \(x=4\)vào hàm số ban đầu ta được

\(f\left(65\right)=4^2-3.4=16-12=4\)

Vậy \(f\left(65\right)=4\)

5 tháng 5 2017

\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)

Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)

Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.

Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như  \(x\le-1\)

Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)

Khi đó minP = 2 khi x = -1, y = -1.

Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.

Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)

Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)

Vậy \(minP=3\)  khi \(x=1\Rightarrow y=2\)

Tóm lại \(minP=2\) khi x = -1, y = -1.

18 tháng 12 2016

thanks

 

30 tháng 12 2015

yugi sắp có phim mới rùi hay lém

tên của nó hình như là yugioh: dark ò the gì gì đó

**** nha

30 tháng 12 2015

x=3,có thể x=0;1 theo mình nghĩ lad thế

19 tháng 1 2019

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x;y\\\left(y-\sqrt{2}\right)^2\ge0\forall x;y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\ge2008\forall x;y\)

\(\Rightarrow N\ge2008\forall x;y\)

\(N=2008\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\sqrt{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

19 tháng 1 2019

 \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-\sqrt{2}\right)^2\ge0\end{cases}}\text{Dấu }=\text{xảy ra khi}\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

\(\Rightarrow MinN=2008\Leftrightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}\)

\(M=3.1+\frac{1-\sqrt{2}^2}{1+1}=3+\frac{1-2}{2}=\frac{5}{2}\)

22 tháng 3 2018

Ta có : 

\(\left(x+1\right)^2\ge0\)\(\left(\forall x\inℤ\right)\)

\(\left(y-\sqrt{2}\right)^2\ge0\)\(\left(\forall y\inℤ\right)\)

\(\Rightarrow\)\(\left(x+1\right)^2+\left(y-\sqrt{2}\right)^2+2008\ge2008\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-\sqrt{2}\right)^2=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y-\sqrt{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\sqrt{2}\end{cases}}}\)

Thay \(x=-1\) và \(y=\sqrt{2}\) vào \(M=3x+\frac{x^2-y^2}{x^2+1}\) ta được : \(M=3.\left(-1\right)+\frac{\left(-1\right)^2-\left(\sqrt{2}\right)^2}{\left(-1\right)^2+1}\)

\(M=-3+\frac{1-2}{1+1}\)

\(M=-3+\frac{-1}{2}\)

\(M=\frac{-7}{2}\)

Vậy : +) Giá trị của \(M=3x+\frac{x^2-y^2}{x^2+1}\) tại \(x=-1\) và \(y=\sqrt{2}\) là \(\frac{-7}{2}\)

         +) Giá trị nhỏ nhất của \(P=2008\) khi \(x=-1\) và \(y=\sqrt{2}\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

x=0 vs y= 1

ok nha

không  bt đúng hay sai