Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy khi 1 số chia cho 3 có thể có số dư là 3k+1;3k+2;3k
Nếu ta thử vào các số thì chắc chắn có 1 số chia hết cho 3 trong n(n+4)(n+8)
n ( n + 4 ) ( n + 8 )
Ta có : n.3 + ( 4 + 8 ) = n.3 + 12
12 chia hết cho 3
Mà n.3 chia hết cho 3
Từ đó ta có đẳng thức: n.3 + 12 chia hết cho 3
=> đpcm
n(n + 4) (n + 8)
ta có: n.3 + (4 + 8) = n.3 + 12
12 chia hết cho 3
mà n.3 chia hết cho 3
từ đó ta có đẳng thức: n.3 + 12 chia hết cho 3
=> đpcm
n(n+4)(n+8)
= 3n + 4 + 8
= 3n + 12
=> 3n chia hết cho 3 => 3n chia 3 dư 0
=> 12 chai hết cho 3 => 12 chia 3 dư 0
=> 3n + 12 chia hết cho 3 => 3n + 12 chia 3 dư 0
=> Tích n(n+4)(n+8) chia cho 3 dư 0
Nếu n chia hết cho 3
=> Tích chia hết cho 3
Nếu n chia 3 dư 1 => n + 8 chia hết cho 3
=> Tích chia hết cho 3
Nếu n chia cho 3 dư 2 => n + 4 chia hết cho 3
=> Tích chia hết cho 3
Vậy n(n+4)(n+8) chia hết cho 3 hay chia 3 dư 0
ta có:
n(n+4)(n+8)=3n+12
mà 3n chia hết cho 3
12 chia hết cho 3
=>SỐ DƯ TRONG PHÉP CHIA LÀ 0