K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

Ta thấy khi 1 số chia cho 3 có thể có số dư là 3k+1;3k+2;3k

Nếu ta thử vào các số thì chắc chắn có 1 số chia hết cho 3 trong n(n+4)(n+8)

27 tháng 12 2016

n ( n + 4 ) ( n + 8 )

Ta có : n.3 + ( 4 + 8 ) = n.3 + 12

12 chia hết cho 3

Mà n.3 chia hết cho 3

Từ đó ta có đẳng thức: n.3 + 12 chia hết cho 3 

=> đpcm

27 tháng 12 2016

=n.n.n+(4+8)

=n.3+12

vì n.3 chia hết cho 3 có thừa số 3

=> số dư là 0

16 tháng 12 2015

n(n + 4) (n + 8) 

ta có: n.3 + (4 + 8) = n.3 + 12

12 chia hết cho 3

mà n.3 chia hết cho 3

từ đó ta có đẳng thức: n.3 + 12 chia hết cho 3

=> đpcm

16 tháng 12 2015

Dư 0

17 tháng 12 2015

n(n+4)(n+8)

= 3n + 4 + 8

= 3n + 12

=> 3n chia hết cho 3 => 3n chia 3 dư 0

=> 12 chai hết cho 3 => 12 chia 3 dư 0

=> 3n + 12 chia hết cho 3 => 3n + 12 chia 3 dư 0

=> Tích n(n+4)(n+8) chia cho 3 dư 0

17 tháng 12 2015

Nếu n chia hết cho 3

=> Tích chia hết cho 3

Nếu n chia 3 dư 1 => n + 8 chia hết cho 3

=> Tích chia hết cho 3

Nếu n chia cho 3 dư 2 => n + 4 chia hết cho 3

=> Tích chia hết cho 3

Vậy n(n+4)(n+8) chia hết cho 3 hay chia 3 dư 0 

27 tháng 12 2016

ta có:

n(n+4)(n+8)=3n+12

mà 3n chia hết cho 3

12 chia hết cho 3

=>SỐ DƯ TRONG PHÉP CHIA LÀ 0

27 tháng 12 2016

n(n+4)(n+8) = 3n+12 = 3(n+4)

Mà 3(n+4) chia hết cho 3 nên n(n+4)(n+8) chia 3 dư 0