\(x^5+2x^4+3x^2+x-3\) cho đa thức \(x^2+1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

Thực hiện phép chia ta được:

\(x^5+2x^4+3x^2+x-3=\left(x^2+1\right)\left(x^3+2x^2-x+1\right)+2x-4\)

để sô dư của phép chia bằng 0 thì 2x-4=0 \(\Leftrightarrow\)x=2

Vậy với x=2 số dư của phép chia bằng 0

22 tháng 1 2018

Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)

Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)

\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)

Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)

Ta cũng có:

\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)

Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)

Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\)  và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)

Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)

Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5

22 tháng 7 2018

Phần (c-b)x sai phải là (c-b+a-ax)x

6 tháng 11 2018

Thực hiện phép chia đa thức ta được :

3x5 - x4 - 2x3 + x2 + 4x + 5 : ( x2 - 2x + 2 ) = ( 3x3 + 5x2 + 2x - 5 ) dư ( -10x + 15 )

Vậy để dư bằng 0 thì -10x + 15 = 0 <=> 3/2

Vậy x = 3/2

26 tháng 6 2018

Ta có : \(x^4+x^2+1=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)\)

Số dư của phép chia đa thức \(f(x)\)cho x4 + x2 + 1 là đa thức có bậc thấp hơn , tức là \(ax^3+bx^2+cx+d\)

Ta có : \(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)

\(=(x^2+x+1)(x^2-x+1)g(x)+(x^2+x+1)(ax+b-a)+(c-d)x+d+a-b\)

\(=(x^2+x+1)[(x^2-x+1)g(x)+ax+b-a]+(c-b)x+d+a-b\)

Vậy nên : \(\hept{\begin{cases}c-d=-1\\d+a-b=1\end{cases}}\)

Ta cũng có :

\(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)

\(=(x^2-x+1)(x^2+x+1)g(x)+(x^2-x+1)(ax+b+a)+(c+b)x+d-a-b\)

Vậy nên : \(\hept{\begin{cases}c+d=3\\d-a-b=5\end{cases}}\)

Từ 1 và 2 , ta có : \(\hept{\begin{cases}c-d=-1\\c+d=3\end{cases}}\)và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)

Vậy nên : \(\hept{\begin{cases}c=1\\b=2\end{cases}}\)và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow}\hept{\begin{cases}d=5\\a=-2\end{cases}}\)

Vậy thì đa thức dư cần tìm là : -2x3 + 2x2 + x + 5

19 tháng 10 2018

BẠN ĐỢI MK XÍU NHA

19 tháng 10 2018

1

a) x^2+2x-5                                b) x^2+x+7 9 (dư 8)

2

x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;

3

a=2

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị...
Đọc tiếp

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0

Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........

Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........

Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......

Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị của biểu thức x2 + \(\frac{1}{x^2}\)là.......

Câu 6: Cho x, y là các số khác 0 thỏa mãn x2 - 2xy + 2y2 - 2x + 6y + 5 = 0

Giá trị của biểu thức P = \(\frac{3x^2y-1}{4xy}\) là........

Câu 7: Một hình thang cân có góc ở đáy bằng 450, cạnh bên bằng 2cm, đáy lớn bằng 3cm. Độ dài đường trung bình của hình thang là..........

Câu 8: Biến đổi biểu thức \(\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) với x \(\ne\) 2 ta được phân thức .................

1
3 tháng 1 2017

trôi hết đề : Câu 7

\(\left(3-\sqrt{2}\right)\)

câu 8:

\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)

Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)

\(\dfrac{x^3-3x^2+4x-5}{x-2}=\dfrac{x^3-2x^2-x^2+2x+2x-4-1}{x-2}\)

\(=x^2-x+2+\dfrac{-1}{x-2}\)

Vậy: Số dư là -1