K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2014

minh cung ko biet

 

10 tháng 1 2016

961 dung day kich cho minh nhe

 

10 tháng 1 2016

81 kich cho minh nha

 

2 tháng 8 2020

Gọi số chính phương cần tìm là n2n2

Có:

:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)

Theo bài ra ta có 100A là số chính phương

⇒A⇒A là số chính phương

Đặt A=x2A=x2

Có: n2>100x2n2>100x2

⇒n>10x⇒n>10x

⇒n≥10x+1⇒n≥10x+1

⇒n2≥(10x+1)2⇒n2≥(10x+1)2

⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1

⇒b≥20x+1⇒b≥20x+1

 b≤99b≤99

⇒20x+1≤99⇒20x+1≤99

⇒x≤4⇒x≤4

Ta có :

n2=100x2+b≤1600+99n2=100x2+b≤1600+99

⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699

Chỉ  412=1681(tm)412=1681(tm)

Vậy số chính phương lớn nhất phải tìm là 412=1681

28 tháng 7 2017

Gọi số phải tìm là: \(n=\overline{a_1a_2a_3a_4a_5a_6}\)

Đặt \(x=\overline{a_1a_2a_3}\left(x\varepsilon N\right)\Rightarrow\overline{a_4a_5a_6}=\overline{a_1a_2a_3}+1=x+1\)

\(\Rightarrow n=\overline{a_1a_2a_3a_4a_5a_6}=\overline{a_1a_2a_3}.1000+\overline{a_4a_5a_6}=x.1000+\left(x+1\right)=1001x+1\)

Do n là số chính phương nên ta sẽ có: \(1001x+1=y^2\left(y\varepsilon N\right)\)

\(\Rightarrow y^2-1=1001x\Leftrightarrow\left(y-1\right)\left(y+1\right)=7.11.13.x\)

Ta lại có: \(100\le x\le999\Rightarrow317\le y\le1000\)( * )

Các số 7,11,13 là các số nguyên tố nên \(\left(y-1\right)\left(y+1\right)\)phải chia hết cho 7; 11 và 13. Kết hợp với điều kiện ( * ) ta có:

  - Trường hợp 1: \(y+1=11.13k=143k\Leftrightarrow y=143k-1\)và \(y-1=7k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k\varepsilon\left(3;4;5;6\right)\)chỉ có \(k=3;k'=61\)thỏa điều kiện \(\Rightarrow x=183\Rightarrow n=183184\)

  - Trường hợp 2: \(y-1=11.13k=143k\Leftrightarrow y=143k+1\)và \(y+1=7k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k\varepsilon\left(3;4;5;6\right)\)chỉ có \(k=4;k'=82\)thỏa điều kiện \(\Rightarrow x=328\Rightarrow n=328329\)

  - Trường hợp 3: \(y+1=7.11k=77k\Leftrightarrow y=77k-1\)và \(y-1=13k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{5..12}\)chỉ có \(k=11;k'=65\)thỏa điều kiện \(\Rightarrow x=715\Rightarrow n=715716\)

  - Trường hợp 4: \(y-1=7.11k=77k\Leftrightarrow y=77k+1\)và \(y+1=13k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{5..12}\)không tồn tại \(k\)và \(k'\)thỏa điều kiện.

  - Trường hợp 5: \(y+1=7.13k=91k\Leftrightarrow y=91k-1\)và \(y-1=11k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{4..10}\)chỉ có \(k=8;k'=66\)thỏa điều kiện \(x=528\Rightarrow n=528529\left(k,k'\varepsilon N\right)\)

  - Trường hợp 6: \(y-1=7.13k=91k\Leftrightarrow y=91k+1\)và \(y+1=11k'\left(k,k'\varepsilon N\right)\)

Khi ấy \(k=\overline{4..10}\)không tồn tại \(k\)và \(k'\)thỏa điều kiện.

Vậy các số thỏa mãn đề bài là: 183184, 328329, 715716, 528529.