K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

Gọi số chính phương cần tìm là n2n2

Có:

:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)

Theo bài ra ta có 100A là số chính phương

⇒A⇒A là số chính phương

Đặt A=x2A=x2

Có: n2>100x2n2>100x2

⇒n>10x⇒n>10x

⇒n≥10x+1⇒n≥10x+1

⇒n2≥(10x+1)2⇒n2≥(10x+1)2

⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1

⇒b≥20x+1⇒b≥20x+1

 b≤99b≤99

⇒20x+1≤99⇒20x+1≤99

⇒x≤4⇒x≤4

Ta có :

n2=100x2+b≤1600+99n2=100x2+b≤1600+99

⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699

Chỉ  412=1681(tm)412=1681(tm)

Vậy số chính phương lớn nhất phải tìm là 412=1681

27 tháng 12 2014

minh cung ko biet

 

10 tháng 1 2016

961 dung day kich cho minh nhe

 

21 tháng 1 2016

Đặt abcd = k\(^2\) ta có ab - cd = 1 và k ∈ N , 32 ≤ K < 100

=> 101cd = k\(^2\) - 100 =  (k-10)(k+10) = k + 10 chia hết cho 101 hoặc k- 10 chia hết cho 101

Mà ( k-10;101)=1 => k+10 chia hết cho 101 

Vì 32 ≤ k < 100 nên 42 ≤  k +- 10 < 101=> k+ 10 = 101 => k = 91\(^2\)=> abcd = 91 = 8281 

9 tháng 11 2014

Câu b, mình đã làm ở bài tìm biển số xe máy, KQ 7744.

Câu a thì làm như sau:

Gọi số cần tìm là ab (a,b\(\in\)N, 0<a<10, 0\(\le\)b<10), theo bài ra:

ab.135=m2(m\(\in\)N)<=>(10a+b).32.3.5=m2<=>[9a+(a+b)].32.3.5=m2, vì (3,5)=1 nên 9a+(a+b) phải chia hết cho cả 3 và 5.

- Để 9a+(a+b)=10a+b chia hết cho 5 thì b phải = 5

- Để 9a+(a+b) chia hết cho 3 thì a+b=a+5 phải chia hết cho 3, khi đó a=1,4,7

Thử lại thấy a=1 là được. Vậy số cần tìm là 15

5 tháng 7 2017

Mấy bạn sai hết rùi ko phải 35 vì 35*135=4725 ko phải số chính phương

ta cần làm thế này:Đặt số chính phương cần tìm là n (9<n<100,...)

theo bài ra ta có n*135=k^2 =))n x 3^3 x 5=k^2 =)) n=3*5*a^2 

mà 9<n<100 =))    0,6<a^2<6,6     vậy a^2={1;4}      =))) n={15; 60} vây số cần tìm là 15 và 60 

Xét lại ta thấy 15 x 135=2025=45^2           60 x 135=8100=90^2

ai ngang qua cho nhé