Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(\begin{bmatrix} x> 1 & \\ x< -1& \end{bmatrix}\) ta có: \(x^{3}< x^{3}+2x^{2}+3x+2< (x+1)^{3}\Rightarrow x^{3}< y^{3}< (x+1)^{3}\) (không xảy ra)
Từ đây suy ra: \(-1\leq x\leq 1\)
mà \(x\in \mathbb{Z}\Rightarrow x\in \left \{ -1;0;1 \right \}\)
\(\bullet\)Với \(x=-1\Rightarrow y=0\)
\(\bullet\)Với \(x=0\Rightarrow y=\sqrt[3]{2}\) (không thỏa mãn)
\(\bullet\)Với \(x=1\Rightarrow y=2\)
Vậy phương trình có 2 nghiệm nguyên \((x;y)\) là \((-1;0)\) và \((1;2)\)
\( nha\)
\(x^2+y^2=0\)
Mà \(x^2\ge0;y^2\ge0\)nên \(x^2+y^2\ge0\)
(Dấu "="\(\Leftrightarrow x=y=0\))
\(x^3+3x=x^2y+2y+5\) \(\left(1\right)\)
\(\Leftrightarrow x^2y+2y=x^3+3x-5\)
\(\Leftrightarrow\left(x^2+2\right)y=x^3+3x-5\)
\(\Leftrightarrow y=\frac{x^3+3x-5}{x^2+2}=\frac{x^3+2x+x-5}{x^2+2}\)
\(=\frac{x\left(x^2+2\right)+\left(x-5\right)}{x^2+2}=\frac{x\left(x^2+2\right)}{x^2+2}+\frac{x-5}{x^2+2}\)
\(=x+\frac{x-5}{x^2+2}\)
Mà \(x,y\in Z\)
\(\Rightarrow\frac{x-5}{x^2+2}\in Z\)
\(\Rightarrow x-5⋮x^2+2\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\)
\(\Rightarrow x^2-25⋮x^2+2\)
\(\Rightarrow x^2+2-27⋮x^2+2\)
\(\Rightarrow27⋮x^2+2\)
\(\Rightarrow\left(x^2+2\right)\inƯ\left(27\right)\)
Mà \(Ư\left(27\right)=\left\{\pm1;\pm3;\pm9;\pm27\right\}\)
Nhưng \(x^2+2\ge2\forall x\)
\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)
Lập bảng giá trị :
\(x^2+2\) | \(3\) | \(9\) | \(27\) |
\(x^2\) | \(1\) | \(7\) | \(25\) |
\(x\) | \(\pm1\) | \(\sqrt{7}\) | \(\pm5\) |
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\) \(\left(2\right)\)
Thay \(\left(2\right)\)vào \(\left(1\right)\)ta có :
+) Với \(x=-1\Rightarrow y=-3\) ( thõa mãn )
+) Với \(x=1\Rightarrow y=-\frac{1}{3}\) ( loại )
+) Với \(x=-5\Rightarrow y=-\frac{145}{27}\) ( loại )
+) Với \(x=5\Rightarrow y=5\) ( thõa mãn )
Vậy các số nguyên \(\left(x,y\right)\)cần tìm là : \(\left(-1;-3\right)\) ; \(\left(5;5\right)\)
\(4x^2=9y\left(y-x\right)\)
\(\Leftrightarrow4x^2+9xy-9y^2=0\)
\(\Leftrightarrow\left(4x^2-3xy\right)+\left(12xy-9y^2\right)=0\)
\(\Leftrightarrow\left(4x-3y\right)\left(x+3y\right)=0\)
Mà x;y>0 nên x+3y>0
=> 4x-3y=0
=>4x=3y
Thay vào mà tính
x2.(x+3)+y2.(y+5)−(x+y).(x2−xy+y2)=0
<=>\(x^3+3x^2+y^3+5y^2-x^3-y^3=0\)(áp dụng hằng đẳng thức)
<=> \(3x^2+5y^2=0\)
ta thấy \(3x^2\ge0\)với mọi x
\(5y^2\ge0\) với mọi y
=> \(3x^2+5y^2\ge0\)
=> x=0 và y=0
vậy cặp số (x;y)=(0;0)
y đâu hở bạn?
mình lộn đề là\(2x^2+3y^2+4x=19\)