\(\frac{3x+3y+5}{x+y}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

\(Q=2x^2+\frac{2}{x^2}+3y^2+\frac{3}{y^2}+\frac{4}{x^2}+\frac{5}{y^2}\)

Áp dụng cô si ,ta có

\(2x^2+\frac{2}{x^2}\ge2\sqrt{2x^2\cdot\frac{2}{x^2}}=4\)

\(3y^2+\frac{3}{y^2}\ge2\sqrt{3y^2\cdot\frac{3}{y^2}}=6\)

\(\Rightarrow Q\ge4+6+9=19\)

Dấu "=" xảy ra khi x=y=1

22 tháng 11 2017

giup minh voi cac ban

10 tháng 5 2018

ta có:\(\frac{a^2-4}{2x-5}=2+a\)

\(ĐKXĐ:x\ne\frac{5}{2}\)

\(\Rightarrow\left(2+a\right).\left(2x-5\right)=a^2-4\)

\(\Rightarrow2x-5=\frac{a^2-4}{a+2}=a-2\)

\(\Leftrightarrow x=\frac{a-3}{2}\)

vì x là số nguyên dương nhỏ hơn 2  nên x=1

\(\Leftrightarrow1=\frac{a-3}{2}\)

\(\Leftrightarrow a-3=2\)

\(\Leftrightarrow a=5\)

13 tháng 11 2015

1.để Ak xđịnh thì x2+x-12=0

                   <=>x2+4x-3x-12=0

                   <=>x(x+4)-3(x+4)=0

                   <=>(x+4)(x-3)=0 <=> x=-4 hoặc x=3

Vậy để A k xđịnh <=> x=-4 hoặc x=3

**** cho mìk vs nha bạn

 

27 tháng 11 2019

ĐKXĐ : \(x\ne\pm7\)

Ta có : \(P=\frac{x^2+7x}{x^2-49}=\frac{x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}=\frac{x}{x-7}=1+\frac{7}{x-7}\)

Để P nhận giá trị nguyên

\(\Leftrightarrow\frac{7}{x-7}\)có giá trị nguyên

<=> x - 7 thuộc Ư ( 7) = { 1 ; -1 ; 7 ; -7 }

Ta có bảng tìm x :

x - 71-17-7
x8

6

140

( thỏa mãn ĐKXĐ )

Vậy với x = { 0 ; 6 ; 8 ; 14 } thì P nhận giá trị nguyên 

27 tháng 11 2019

ĐK: x khác 7; -7

\(P=\frac{x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}=\frac{x}{x-7}=1+\frac{7}{x-7}\)

Để P nguyên <=>7 chia hết cho x - 7 <=>  x - 7  thuộc Ư( 7) = { -7; -1; 1; 7 }

<=> \(x\in\left\{0;6;8;14\right\}\)thỏa mãn

Vậy : ...

6 tháng 4 2018

Bài 2:

a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)

\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{2}{2x+1}\)

b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)

\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)

c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)

+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)

+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)

Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)