K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 11 2019

Gọi số học sinh nam là x \(\Rightarrow\) nữ là \(30-x\) (\(2\le x< 30\))

Không gian mẫu: \(C_{30}^3\)

Số cách chọn ra 2 nam và 1 nữ: \(C_x^2.C_{30-x}^1\)

Xác suất: \(\frac{C_x^2C_{30-x}^1}{C_{30}^3}=\frac{12}{29}\)

\(\Rightarrow x=16\)

Vậy có 16 nam và 14 nữ

NV
26 tháng 7 2020

c/

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=cos3x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos3x\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=3x+k2\pi\\x+\frac{\pi}{3}=-3x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

d/

\(\Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=sin2x\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=2x+k2\pi\\3x-\frac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
26 tháng 7 2020

a/

\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)

\(\Rightarrow x+\frac{\pi}{3}=\pi-x-\frac{\pi}{6}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

b/

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=sin\frac{\pi}{12}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=sin\frac{\pi}{12}\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{12}+k2\pi\\x+\frac{\pi}{6}=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

30 tháng 7 2019
https://i.imgur.com/W27uvKB.jpg
3 tháng 4 2017

a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2

⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =

3 tháng 4 2017

b) 3sin3x - 4cos3x = 5 ⇔ sin3x - cos3x = 1.

Đặt α = arccos thì phương trình trở thành

cosαsin3x - sinαcos3x = 1 ⇔ sin(3x - α) = 1 ⇔ 3x - α = + k2π

⇔ x = , k ∈ Z (trong đó α = arccos).



NV
13 tháng 5 2020

\(K=\lim\limits n\left(\sqrt[3]{1+\frac{1}{n}-\frac{1}{n^3}}-1+3\left(2-\sqrt{4+\frac{1}{n}+\frac{1}{n^2}}\right)\right)\)

\(=\lim\limits n\left[\frac{\frac{1}{n}-\frac{1}{n^3}}{\sqrt[3]{\left(1+\frac{1}{n}-\frac{1}{n^3}\right)^2}+\sqrt[3]{1+\frac{1}{n}-\frac{1}{n^3}}+1}-\frac{3\left(\frac{1}{n}+\frac{1}{n^2}\right)}{2+\sqrt{4+\frac{1}{n}+\frac{1}{n^2}}}\right]\)

\(=\lim\limits\left[\frac{1-\frac{1}{n^2}}{\sqrt[3]{\left(1+\frac{1}{n}-\frac{1}{n^3}\right)^2}+\sqrt[3]{1+\frac{1}{n}-\frac{1}{n^3}}+1}-\frac{3\left(1+\frac{1}{n}\right)}{2+\sqrt{4+\frac{1}{n}+\frac{1}{n^2}}}\right]\)

\(=\frac{1}{1+1+1}-\frac{3}{2+2}=-\frac{5}{12}\)

NV
12 tháng 5 2019

S A B C D H M N K

Kẻ \(AH\perp BD\Rightarrow BD\perp\left(SAH\right)\Rightarrow\widehat{SHA}\) là góc giữa (SBD) và (ABCD)

\(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AB^2}\Rightarrow AH=\frac{AB.AD}{\sqrt{AB^2+AD^2}}=\frac{a\sqrt{3}}{2}\)

\(SA=\sqrt{SD^2-AD^2}=2a\)

\(tan\widehat{SHA}=\frac{SA}{AH}=\frac{4\sqrt{3}}{3}\Rightarrow\widehat{SHA}\simeq66^035'\)

b/ \(MS=MA\Rightarrow d\left(S;\left(MND\right)\right)=d\left(A;\left(MND\right)\right)\)

Từ A kẻ \(AK\perp MD\Rightarrow AK\perp\left(MND\right)\Rightarrow AK=d\left(A;\left(MND\right)\right)\)

\(AM=\frac{SA}{2}=a\Rightarrow\frac{1}{AK^2}=\frac{1}{AM^2}+\frac{1}{AD^2}\Rightarrow AK=\frac{AM.AD}{\sqrt{AM^2+AD^2}}=\frac{a\sqrt{3}}{2}\)

NV
20 tháng 10 2019

ĐKXĐ: ...

\(\Leftrightarrow\frac{3cos^2x}{sin^2x}-2cosx+2\sqrt{2}sin^2x-3\sqrt{2}cosx=0\)

\(\Leftrightarrow cosx\left(\frac{3cosx-2sin^2x}{sin^2x}\right)-\sqrt{2}\left(3cosx-2sin^2x\right)=0\)

\(\Leftrightarrow\left(3cosx-2sin^2x\right)\left(\frac{cosx}{sin^2x}-\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3cosx-2sin^2x=0\\cosx-\sqrt{2}sin^2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2cos^2x+3cosx-2=0\\\sqrt{2}cos^2x+cosx-\sqrt{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\alpha.\beta=\frac{\pi^2}{12}\)