K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

Ta có: 4 > 3 (**). Để có bất đẳng thức ngược chiều là 4a < 3a ta phải nhân cả hai vế của (**) với số âm. Vậy a là số âm.

22 tháng 4 2017

a) Ta có: 12 < 15. Để có bất đẳng thức

12a < 15a ta phải nhân cả hai vế của bất đẳng thức 12 < 15 với số a.

Để được bất đẳng thức cùng chiều thì a > 0

b) Vì 4 > 3 và 4a < 3a trái chiều. Để nhân hai vế của bất đẳng thức 4 > 3 với a được bất đẳng thức trái chiều thì a < 0

c) Từ -3 > -5 để có -3a > -5a thì a phải là số dương

18 tháng 6 2016

a)12a<15a 

Ta có:12<15 để có bất đẳng thức

12a<15a  ta phải nhân cả 2 vế của bất đẳng thức 12<15 vs số a

Để đc bất đẳng thức cùng chiều thì a<0

b)4a<3a

Vì 4>3 và 4a<3a trái  chiều.Để nhân 2 vế của bất đẳng thức 4>3 vs a đc bất đẳng thức trái chiều thì a<0

c)-3a>-5a

Từ -3 > -5 để có -3a > -5a thì a phải là số dương

18 tháng 6 2016

a) a là dương

b) a là âm

c) a là dương

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

6 tháng 5 2018

Dể \(\left|x-7\right|=3x-1\) có nghiệm thì \(3x-1\ge0\)

                                                                      \(\Leftrightarrow x\ge\frac{1}{3}\)

Khi đó phương trình trở thành 

\(\orbr{\begin{cases}x-7=3x-1\\x-7=1-3x\end{cases}\Leftrightarrow}\orbr{\begin{cases}-2x=6\\4x=8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

Mấy cái phương trình đó bạn tự giải nhé

Vậy.......................................................................................................

\(0,2x< 0,6\Leftrightarrow x< 3\)(cái này bạn cũng tự giải nốt nhé)

6 tháng 5 2018

a) \(|x-7|=3x-1\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=1-3x\\x-7=3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x=8\\-2x=6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy phương trình có tập nghiệm  \(S=\left\{-3;2\right\}\)

b) \(0,2x< 0,6\)

\(\Leftrightarrow x< 3\)

Vậy phương trình có tập nghiệm  \(\left\{x/x< 3\right\}\)

c) \(4a< 3a\)

\(\Leftrightarrow a< 0\)

Vậy nếu 4a < 3a thì a âm

a: 5b>3b

nên 5b-3b>0

=>2b>0

hay b>0

b: -12b>8b

nên -20b>0

hay b<0

c: -6b>=9b

nên -6b-9b>=0

=>b<=0

d: 3b<=15b

=>3b-15b<=0

=>-12b<=0

hay b>=0

7 tháng 4 2017

Ta có:

\(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)

\(\Leftrightarrow13b^2-26b-12a=0\)

\(\Leftrightarrow12\left(a+b\right)=13b^2-14b\)

\(\Leftrightarrow a+b=\frac{13b^2-14b}{12}\)

\(\Leftrightarrow a+b=b^2-b+\frac{b^2-2b}{12}=b^2-b+\frac{b\left(b-2\right)}{12}\)

Dễ thấy b phải là số chẵn (1)

để \(\frac{b\left(b-2\right)}{2.2.3}\) nguyên thì

\(\Rightarrow\orbr{\begin{cases}b⋮3\\b-2⋮3\end{cases}}\)(2)

Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}b=6k\\b-2=6k\end{cases}\left(k\ge1\right)}\)

Với \(b=6k\) thế vào ta được

\(a+b=\frac{13\left(6k\right)^2-14.\left(6k\right)}{12}=36k^2-7k\)

Dễ thấy hàm số \(f\left(k\right)=39k^2-7k\) là hàm đồng biết với \(k\ge1\)

Từ đây ta có a + b nhỏ nhất khi k nhơ nhất hay \(k=1\)

\(\Rightarrow\hept{\begin{cases}b=6\\a=26\\a+b=32\end{cases}}\)

Tương tự cho trường hợp \(b-2=6k\) sẽ tìm được GTNN của a + b

PS: Vì m thích làm sự đơn điệu của hàm số thôi. Nếu các b có cách khác thì cứ làm cho gọn nhé :)

7 tháng 4 2017

\(\Rightarrow a=26\)\(b=6\)Còn cách làm thì giống như Bạn alibaba nguyễn đó bạn 

~ Chúc bạn học giỏi ~~~

15 tháng 4 2020

giả sử P đạt GTNN khi a=x, b=y; c=z. khi đó ta có:

x,y,z>0 và 4x+3y+4z=22

ta thấy với a=x; b=y; c=z thì 

\(\frac{1}{3a}=\frac{1}{3x}=\frac{1}{3x^2};\frac{2}{b}=\frac{2}{y}=\frac{2}{y^2},\frac{3}{c}=\frac{3}{z}=\frac{3}{z^2}\)

do đó, các đánh giá sau sẽ đảm bảo được điều kiện đẳng thức

\(\hept{\begin{cases}\frac{1}{3a}+\frac{a}{3x^2}\ge2\sqrt{\frac{1}{3a}\cdot\frac{a}{3a^2}}=\frac{2}{3x}\\\frac{2}{b}+\frac{2b}{y^2}\ge2\sqrt{\frac{2}{b}\cdot\frac{2b}{y^2}}=\frac{4}{y}\\\frac{3}{c}+\frac{3c^2}{z}\ge2\sqrt{\frac{3}{c}\cdot\frac{3c}{z^2}}=\frac{6}{z}\end{cases}}\)

\(\Rightarrow\frac{1}{3a}\ge\frac{2}{3x}-\frac{a}{3x^2};\frac{2}{b}\ge\frac{4}{y}-\frac{2b}{y^2};\frac{3}{c}\ge\frac{6}{z}-\frac{3c}{z^2}\)

và như vậy, ta đã chuyển được các phân thức về dạng bậc nhất và thu được

\(P\ge a+b+c+\left(\frac{2}{3x}-\frac{a}{3x^2}\right)+\left(\frac{4}{y}-\frac{2b}{y^2}\right)+\left(\frac{6}{z}-\frac{3c}{z^2}\right)\)

\(=\left(1-\frac{1}{3x^2}\right)a+\left(1-\frac{2}{y^2}\right)b+\left(1-\frac{3}{z^2}\right)c+\frac{2}{3x}+\frac{4}{y}+\frac{6}{z}\)

vấn đề còn lại là ta phải chọn các số x,y,z thích hợp làm sao để có thể sử dụng được giả thiếu 4a+3b+4c=22

muốn vậy các hệ số của a,b,c trong đánh giá trên phải thành lập tỉ lệ 4:3:4 tức là

\(\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{1}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\)

vậy điểm rơi thực sự của bài toán chình là nghiệm của hệ phương trình \(\hept{\begin{cases}4x+3y+4z=22\\\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{2}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\end{cases}\left(1\right)}\)

giải hệ này ta tìm được x=1; y=2; z=3. khi đó ta có:

\(P\ge\left(1-\frac{1}{3}\right)a+\left(1-\frac{2}{2^2}\right)b+\left(1-\frac{3}{3^2}\right)c+\frac{2}{3}+\frac{4}{2}+\frac{6}{3}\)

\(=\frac{4a+3b+4c}{6}+\frac{14}{3}=\frac{22}{6}+\frac{14}{3}=\frac{25}{3}\)

đẳng thức xảy ra khi a=x=1; b=y=2 và c=z=3

15 tháng 3 2018

a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)

Mặt khác: 3b + 5 > 3b + 2 (2)

Từ (1) và (2) suy ra: 3a + 5 > 3b + 2

b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)

Mặt khác: 2 – 4a < 3 – 4a (2)

Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b

23 tháng 3 2023

a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)

Mặt khác: 3b + 5 > 3b + 2 (2)

Từ (1) và (2) suy ra: 3a + 5 > 3b + 2

b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)

Mặt khác: 2 – 4a < 3 – 4a (2)

Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b