Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)
Đáp án là :
a. 1 + a + a^2 + a^3 + ... + a^n
\(=\frac{a^{n+1}-1}{a-1}\)
b. 1^3 + 2^3 + 3^3 + ... + n^3
\(=\left(1+2+3+...+n\right)^2\)
a) ta có : \(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-1\)
\(\Rightarrow2\left(A+1\right)=2\left(2^{2018}-1+1\right)=2\left(2^{2018}\right)=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)
b) ta có : \(A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-2\)
\(\Rightarrow2A+4=2\left(2^{2018}-2\right)+4=2^{2019}-4+4=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)